TO THE STUDENT This *Reteach and Skills Practice Workbook* gives you additional examples and problems for the concept exercises in each lesson. The exercises are designed to help you study mathematics by reinforcing important skills needed to succeed in the everyday world. The materials are organized by chapter and lesson, with one Reteach and one Skills Practice worksheet for every lesson in *California Mathematics, Grade 3*.

Always keep your workbook handy. Along with you textbook, daily homework, and class notes, the completed *Reteach and Skills Practice Workbook* can help you in reviewing for quizzes and tests.

TO THE TEACHER These worksheets are the same ones found in the Chapter Resource Masters for *California Mathematics, Grade 3*. The answers to these worksheets are available at the end of each Chapter Resource Masters booklet.
8-5 Problem-Solving Investigation: Choose a Strategy 161
8-6 Customary Units of Weight 165
8-7 Convert Units of Time 167

Chapter 9 Measurement: Metric System
9-1 Metric Units of Length 169
9-2 Problem-Solving Strategy: Guess and Check 171
9-3 Metric Units of Capacity 175
9-4 Problem-Solving Investigation: Choose a Strategy 177
9-5 Metric Units of Mass 181
9-6 Metric Unit Conversions 183

Chapter 10 Measurement and Geometry
10-1 Geometry: Polygons 185
10-2 Measurement: Perimeter 187
10-3 Measurement: Area 189
10-4 Problem-Solving Strategy: Work a Simpler Problem 191
10-5 Geometry: Triangles 195
10-6 Geometry: Quadrilaterals 197
10-7 Problem-Solving Investigation: Choose a Strategy 199
10-8 Geometry: Solid Figures 203
10-9 Geometry: Complex Solid Figures 205
10-10 Measurement: Find Volume 207

Chapter 11 Statistics: Data, Graphs, and Probability
11-1 Bar Graphs ... 209
11-2 Line Plots .. 211
11-3 Problem-Solving Strategy: Make an Organized List 213
11-4 Identify Probability 217
11-5 Problem-Solving Investigation: Choose a Strategy 219
11-6 Make Predictions 223

Chapter 12 Fractions
12-1 Parts of a Whole 225
12-2 Problem-Solving Strategy: Draw a Picture 227
12-3 Find Equivalent Fractions 231
12-4 Problem-Solving Investigation: Choose the Best Strategy 233
12-5 Compare Fractions 237
12-6 Add Like Fractions 239
12-7 Subtract Like Fractions 241

Chapter 13 Fractions and Decimals
13-1 Tenths ... 243
13-2 Hundredths ... 245
13-3 Problem-Solving Strategy: Act It Out 247
13-4 Decimals and Money 251
13-5 Problem-Solving Investigation: Choose a Strategy 253

Chapter 14 Multiply by One-Digit Numbers
14-1 Multiply Multiples of 10, 100, and 1,000 257
14-2 Problem-Solving Strategy: Use Logical Reasoning 259
14-3 Estimate Products 263
14-4 Multiply by a One-Digit Number 265
14-5 Problem-Solving Investigation: Choose a Strategy 267
14-6 Multiply Two-Digit Numbers 271
14-7 Multiply Greater Numbers 273
14-8 Multiply Money .. 275

Chapter 15 Divide by One-Digit Numbers
15-1 Divide Multiples of 10, 100, 1,000 277
15-2 Estimate Quotients 279
15-3 Two-Digit Quotients 281
15-4 Problem-Solving Strategy: Work Backward 283
15-5 Three-Digit Quotients 287
15-6 Problem-Solving Investigation: Choose a Strategy 289
15-7 Divide Money 293
Reteach

Number Patterns

When looking for a pattern, see how the next number changes.

1. \(+2 \)

 \[
 \begin{array}{ccccc}
 2 & 4 & 6 & 8 & \text{(What is the pattern? Add 2.)}
 \end{array}
 \]

2. \(+3 \)

 \[
 \begin{array}{ccccc}
 3 & 6 & 9 & 12 & 15 \text{(What is the pattern? Add 3.)}
 \end{array}
 \]

Identify the pattern. Then find the missing numbers.

1. 5, _____, 15, _____, 25, _____

2. 10, 20, _____, 40, _____, _____

3. 100, 90, _____, 70, _____, _____

4. 322, _____, _____, 325, _____

5. 25, 125, _____, 325, _____, _____

6. Each student in the class has a hat collection. If the pattern continues, how many hats will Erik and Alissa have?

 Thomas

 Kristen

 Ryan

 Collette

 Erik

 Alissa
Identify the pattern. Then find the missing numbers.

1. 5, _____, 15, _____, 25, _____
2. 6, 8, 10, _____, 14, _____, _____
3. 75, _____, 65, 60, _____
4. 7, 10, _____, 16, _____, 22
5. 105, 110, _____, 120, _____
6. 96, 94, _____, _____, 88

Solve.

7. Dylan collects 4 more cans for the recycling center than the day before. If the pattern continues, how many cans will he collect on Thursday and Friday?

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>10</td>
<td>14</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Sharika wants to do 3 more sit-ups each day. If she continues, how many sit-ups will she do on Saturday and Sunday?

<table>
<thead>
<tr>
<th></th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
<th>Saturday</th>
<th>Sunday</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>52</td>
<td>55</td>
<td>58</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Four-Step Plan
Kayla’s game piece is on box 40 of a gameboard. She moves it ahead 20 boxes two times. Where is her game piece now?

<table>
<thead>
<tr>
<th>Step 1 Understand</th>
<th>What facts do you know?</th>
</tr>
</thead>
<tbody>
<tr>
<td>What do you know? Kayla starts on _____. She moves her game piece ahead ____ boxes ____ times.</td>
<td></td>
</tr>
</tbody>
</table>

| Step 2 Plan | To find out where Kayla’s game piece is, start with 40 and add 20 two times. |

<table>
<thead>
<tr>
<th>Step 3 Solve</th>
<th>Use your plan to solve the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start at 40.</td>
<td></td>
</tr>
<tr>
<td>Add 20.</td>
<td></td>
</tr>
<tr>
<td>$40 + 20 = 60$</td>
<td></td>
</tr>
<tr>
<td>Add 20.</td>
<td></td>
</tr>
<tr>
<td>$60 + 20 = 80$</td>
<td></td>
</tr>
</tbody>
</table>

Kayla’s game piece is on box _____.

<table>
<thead>
<tr>
<th>Step 4 Check</th>
<th>Check your solution to make sure it makes sense.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Explain why your answer make sense.</td>
<td></td>
</tr>
</tbody>
</table>
Solve. Use the **four-step plan**.

1. Pablo started a game with 650 points. He lost 300 points. How many points did he have at the end of the game?

 What facts do you know? __

 Plan what you will do and in what order. __

 Use your plan to solve the problem. ___

 Check your solution to make sure it makes sense.

2. Rosa ends a game with 600 points. Tyler has 200 more points than Rosa. How many points does Tyler have?

 What facts do you know? __

 Plan what you will do and in what order. __

 Use your plan to solve the problem. ___

 Check your solution to make sure it makes sense.
Skills Practice

Problem-Solving Strategy

Solve. Use the four-step plan.

1. Stephen hits a target worth 60 points. He then hits a target worth 5 points three times. How many points does Stephen have now?

2. Javier has 500 points. Daniel has 200 points less than Javier. Kevin has 300 points more than Daniel. Who is the winner?

3. Amber buys a toy for 62¢. She gives the clerk three quarters. What is her change?

4. Austin starts with $400 in play money. In three rounds of a game, Austin wins $10 in each round. How much money does Austin have after those three rounds?

5. Luke scores 450 points in the first round, 100 points in the second round, and 400 points in the third round. Does he score more than 1,000 points? How many points does he have?

6. Ricardo has 340 points. He has one turn left. The record is 410 points. If Ricardo scores 60 more points, how many points will he have? Will he break the record? Explain.
You can write numbers in expanded form, standard form, and word form.

The models show 1,225.

Expanded Form: $1,000 + 200 + 20 + 5$

Standard Form: 1,225

Word Form: one thousand, two hundred twenty-five

Look at the model. Write the number in the three forms.

1. **Expanded form:** ____________
 - **Standard form:** ____________
 - **Word form:** ____________

2. **Expanded form:** ____________
 - **Standard form:** ____________
 - **Word form:** ____________

3. **Expanded form:** ____________
 - **Standard form:** ____________
 - **Word form:** ____________
Skills Practice
Place Value through 1,000

Write each number in standard form.

1.

2.

3. 600 + 50 + 7 ________________

4. 5 + 30 + 400 + 2,000 __________

5. six hundred nine _______________

6. two thousand eighty ___________

Write each number in word form.

7. 374 ____________________________

8. 3,800 __________________________

Write each number in expanded form.

9. 293 ____________________________

10. 4,190 __________________________

11. 2,050 __________________________

12. 3,704 __________________________
You can use a chart to find the place value of each digit in a number. Look at the number in the chart below. Then see how to write the number in expanded form and in standard form.

<table>
<thead>
<tr>
<th>Ten Thousands</th>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>6</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>

Expanded Form:

\[70,000 + 8,000 + 600 + 30 + 5 \]

(The place value of 7 is ten thousands. It has a value of 70,000.)

Standard Form: 78,635

Write the number 57,981 in the place value chart. Then write the number in **expanded form**.

1.

Expanded Form: ____________________________

Now, write the value of each underlined digit.

2. 32,897 ____________________________

3. 32,897 ____________________________

4. 32,897 ____________________________

5. 32,897 ____________________________

Hint: Think about the expanded form of 32,897.
Skills Practice
Place Value through 10,000

Write the place of each underlined digit. Then write its value.

1. 554 ________________________ 2. 78,998 ________________________
3. 43,066 ________________________ 4. 7,443 ________________________
5. 5,608 ________________________ 6. 45,887 ________________________
7. 876 ________________________ 8. 93,405 ________________________

Write the value of the 6 in each number.

9. 65 ________________________ 10. 36,898 ________________________
11. 35,615 ________________________ 12. 27,061 ________________________
13. 67,422 ________________________ 14. 6,423 ________________________

Write the digit in each place named.

15. 4,521 (hundreds) ______ 16. 45,013 (thousands) ______
17. 98,641 (tens) ______ 18. 77,611 (hundreds) ______
19. 75,092 (ten thousands) ______ 20. 23,026 (ten thousands) ______
21. 32,001 (ones) ______ 22. 1,309 (tens) ______
Use the Four-Step Plan

Tammy baked 32 muffins for her class picnic. Her dog ate some of them, and now Tammy only has 24 muffins left. How many did her dog eat?

Step 1
Understand

Make sure you understand the problem.

What do you know? Tammy baked _____ muffins. She has _____ muffins left.

What do you need to find? ________________

Step 2
Plan

- **Make a plan.**

You know Tammy baked 32 muffins. You know she has 24 muffins left.

You can demonstrate this by drawing the number of muffins and putting an \(x \) through one muffin at a time until you are left with 24.

The number of \(x \) marks tells you how many muffins the dog ate.

Step 3
Solve

Carry out your plan.

Draw 32 muffins.

Put an \(x \) through one muffin at a time until you are left with 24.

Count the \(x \) marks. There are 8. So, the dog ate 8 muffins.

Step 4
Check

Is the solution reasonable?

Reread the problem.

How can you check your answer? ________________
Reteach

Problem-Solving Investigation (continued)

Solve using the four-step plan.

1. Tanya bought a book for her father’s birthday that cost $21. She paid the cashier with $25. How much change did Tanya receive?

2. Will found a plate of orange slices in the kitchen. He ate 4 of them. When he counted the slices, there were 18 left. How many orange slices were on the plate to start with?

3. Pablo started a game with 65 points. He lost 20 points. How many points did he have at the end of the game?

4. Meg ends a game with 60 points. Ted has 30 points more than Meg. How many points does Ted have?

5. Sean and his brother ate some pizza. The pizza had 12 slices. They each had 3 slices. How many slices were left?

6. Lindsey saw 3 movies at the theater with her friend Emma. If another friend joined them for one movie, how many tickets were bought altogether?
Skills Practice

Problem-Solving Investigation

Solve using the four-step plan.

1. Jamie has 545 points in a game. Darren has 431 points. How many more points does Jamie have than Darren?

2. Javier wants to practice soccer twice as long as he did the day before. If he practiced for 10 minutes yesterday, how long will Javier practice today?

3. Travis plans to use a new fish hook every two days on his camping trip. If the trip lasts 12 days, how many fish hooks will Travis use?

4. Henry bought 2 shirts at $3 each. How much did he spend in all?

5. In Gabriella’s picture, she has made every third item a star. If her picture contains 18 items, how many of them are stars?

6. Write a problem that you solve using the four-step plan.
Reteach

Compare Numbers

Which number is less, 341 or 314?
Look at the model for each number.

341

Compare the models.

314

Hundreds: 3 (The same for each model)
Tens: 1 (Different for each model)

1 ten is less than 4 tens.
Say: 314 is less than 341.
Write: 314 < 341.

Compare. Write >, <, or =.

1. 754 \(\square \) 745
2. 80 \(\square \) 80
3. 347 \(\square \) 744
4. 735 \(\square \) 753
5. 301 \(\square \) 310
6. 679 \(\square \) 697
7. 518 \(\square \) 581
8. 919 \(\square \) 991
9. 880 \(\square \) 808
10. 445 \(\square \) 454
Skills Practice

Compare Numbers

Compare. Write >, <, or =.

1. 43 \(\bowtie \) 34
2. 808 \(\bowtie \) 808
3. 876 \(\bowtie \) 678
4. 432 \(\bowtie \) 423
5. 39 \(\bowtie \) 93
6. 85 \(\bowtie \) 58
7. 293 \(\bowtie \) 329
8. 227 \(\bowtie \) 272
9. $455 \(\bowtie \) $453
10. 564 \(\bowtie \) 654
11. $123 \(\bowtie \) $231
12. $515 \(\bowtie \) $515
13. 900 \(\bowtie \) 800
14. 661 \(\bowtie \) 616
15. 670 \(\bowtie \) 677
16. 202 \(\bowtie \) 220
17. $397 \(\bowtie \) $367
18. 424 \(\bowtie \) 422

Solve.

19. Grace has 460 songs downloaded on her computer. Beth has 406 songs. Who has more songs?

20. Alex has 256 stamps in his collection. Brent has 289. Who has fewer stamps?

21. Kelly has 600 seeds. Maria has 425 seeds. Does Maria need more or fewer seeds to have the same amount as Kelly?

22. Mia took 47 pictures on her vacation. Theresa took 10 more pictures than Mia. How many pictures did Theresa take?
Reteach

Order Numbers

A box has 285 bags of marbles, 346 games, and 279 checkers. Order the numbers from greatest to least.

To compare numbers in the hundreds, first compare the hundreds and then the tens. Finally compare the ones if needed.

Step 1
Compare the hundreds.

279
346 ← most hundreds
285
3 > 2

Step 2
Compare the tens.

279
285 ← more tens
8 > 7

Since there are no more numbers to compare, you do not need to compare the ones.

Step 3
Put the amounts in order from greatest to least.

346
285
279

Order the numbers from least to greatest.

1. 3,456 3,565 3,446
2. 1,606 1,609 1,669
3. 8,009 8,909 8,099

Order the numbers from greatest to least.

4. 6,589 6,879 6,599
5. 5,668 5,887 5,688
6. 3,033 3,003 3,330
Order the numbers from **greatest to least**.

1. 822; 1,304; 877
2. 6,423; 3,654; 6,236
3. 8,000; 8,001; 8,100
4. 3,343; 3,453; 4,352
5. 9,019; 9,110; 9,919
6. 5,909; 9,509; 5,919
7. 1,564; 1,643; 1,765
8. 2,443; 4,324; 2,344

Order the numbers from **least to greatest**.

9. 1,879; 1,289; 1,978
10. 5,103; 5,310; 1,531
11. 6,445; 6,544; 4,655
12. 4,455; 5,444; 4,545
13. 7,776; 7,667; 6,776
14. 3,990; 3,997; 3,799
15. 2,220; 2,202; 2,022
16. 2,993; 9,239; 2,393
Round to the Nearest 10 and 100

You can use a number line to help you round numbers. Round 448 to the nearest ten and to the nearest hundred.

448 is closer to 450 than to 440.
To the nearest ten, 448 rounds to 450.
448 is closer to 400 than to 500.
To the nearest hundred, 448 rounds to 400.

Round each number to the nearest ten and nearest hundred.
Use a number line to help you.

1. 166
ten _______ hundred _______

2. 709
ten _______ hundred _______

3. 185
ten _______ hundred _______

4. 234
ten _______ hundred _______

5. 561
ten _______ hundred _______

6. 478
ten _______ hundred _______
Round to the nearest ten.

1. 37 _____
2. 17 _____
3. 388 _____
4. 68 _____
5. 243 _____
6. 566 _____
7. 59 _____
8. 254 _____
9. 934 _____

Round to the nearest hundred.

10. 218 _____
11. 343 _____
12. 5,617 _____
13. 532 _____
14. 777 _____
15. 1,855 _____
16. 715 _____
17. 1,233 _____
18. 5,787 _____

Find the missing digit to make the sentence true.

19. 6 [] 8 rounds to 630. _______
20. 2 [] 8 rounds to 250. _______
21. [] 52 rounds to 800. _____
22. 4,5 [] 3 rounds to 4,600. ______
23. 9 [] 3 rounds to 940. _____
24. 3 [] 5 rounds to 370. _____

Solve.

25. Carlos has 37 CDs in his music collection. To the nearest ten, how many CDs does Carlos own?

26. Nathan scored 2,349 points playing a video game. To the nearest hundred, how many points did he score?
Round to the Nearest 1,000

Use a place-value chart to help you round numbers. Round 7,485 to the nearest thousand.

To round to the nearest thousand, look at the hundreds place. The number of hundreds is less than 5. Round down to 7,000.

Round to the nearest thousand.

1.

2.

3.

4.

5. 2,466

6. 2,335

7. 1,290

8. 7,022

9. 6,690

10. 7,988

11. 4,703

12. 5,824

13. 3,915

14. 9,152

15. 8,619

16. 6,397
Round to the nearest thousand.

1. 1,600
2. 5,689
3. 3,334
4. 5,790
5. 4,560
6. 15,699
7. 38,288
8. 5,604
9. 2,298

Use data from the table for problems 10–13.

<table>
<thead>
<tr>
<th>Road Trips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trips</td>
</tr>
<tr>
<td>Trip A</td>
</tr>
<tr>
<td>Trip B</td>
</tr>
<tr>
<td>Trip C</td>
</tr>
<tr>
<td>Trip D</td>
</tr>
</tbody>
</table>

10. What is the distance of Trip D rounded to the nearest thousand?

11. Which trip has a distance of about 2,000 miles?

12. What is the distance of Trip C rounded to the nearest thousand?

13. What is the distance of Trip C rounded to the nearest thousand?
Addition Properties

You can use different strategies to help you add.

<table>
<thead>
<tr>
<th>Commutative Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can change the order of the addends, but the sum is always the same.</td>
</tr>
<tr>
<td>$4 + 5 = 9$</td>
</tr>
<tr>
<td>$5 + 4 = 9$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identity Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>When you add 0 to a number, the sum is always that number.</td>
</tr>
<tr>
<td>$6 + 0 = 6$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Associative Property</th>
</tr>
</thead>
<tbody>
<tr>
<td>You can group the addends and keep the sum the same.</td>
</tr>
<tr>
<td>$(2 + 4) + 6 = 2 + (4 + 6)$</td>
</tr>
<tr>
<td>$6 + 6 = 2 + 10$</td>
</tr>
<tr>
<td>$12 = 12$</td>
</tr>
</tbody>
</table>

Fill in the blank.

1. If you know $3 + 6 = _____$, then you know $____ + 3 = ____$.
2. If you know $8 + 0 = _____$, then you know $____ + 8 = ____$.
3. If you know $(5 + 6) + 4 = _____$, then you know $5 + (____ + 4) = ____$

Find each sum.

4. $4 + 7 = _____$
5. $9 + 2 = _____$
6. $7 + 5 = _____$
7. $3 + 9 = _____$
8. $12 + 5 = _____$
9. $0 + 4 = _____$
How many pieces of fruit are pictured above?

\[
4 + 3 + 2 = 9 \text{ pieces of fruit}
\]

We can get the same result by using addition properties. Fill in the missing numbers below, using each property.

A. Commutative: \(4 + 3 + 2 = 2 + 4 + 3 = \) ______

B. Identity: \(0 + \) ______ = 9

C. Associative: \((4 + 3) + 2 = \) ______ + (______ + 2) = 9

Find each missing number. Identify the property shown.

1. \(220 + 0 = \) ________________

2. \(14 + 4 = 18\)

 \[4 + \) ______ = 18 ________________

3. \(8 + (2 + 5) + 3 = (8 + 2) + (5 + 3) = \) ________________

Find each sum mentally.

4. \[2 + 3 + 3 = 8\]

5. \[6 + 8 + 2 = 16\]

6. \[4 + 1 + 5 + 6 = 16\]
Sometimes when you solve a problem you need an exact answer. Other times you need an estimate. Deciding if you need an exact answer or an estimate will help you solve the problem. Let’s try an example.

In an hour’s time, Leah can make 12 greeting cards. Steven can make 9 cards in the same amount of time. Together, about how many cards can they make?

Step 1
Understand
What facts do you know?
- Leah makes 12 cards in an hour.
- Steven makes 9 cards in an hour.

Step 2
Plan
Do you need an exact answer to this question?
No. When you see about, you know that an estimated answer is needed.

Step 3
Solve
First, round each number.
Leah 12 cards → 10 cards
Steven 9 cards → 10 cards

Now, add both of your rounded numbers. This will give you a final estimate.

\[10 + 10 = 20\]

So, Leah and Steven can make about 20 greeting cards in an hour.

Step 4
Check
Look back at the problem. Since it says “about how many,” you know that making an estimate is the correct plan. Notice that since \(12 + 9 = 21\), your estimate is very close to the exact answer!
Tell whether an estimate or an exact answer is needed. Then solve.

1. On Saturday, Zachary’s sister works in the garden for 2 hours and earns $5 every hour. For mowing the lawn, Zachary is paid $12. Who will earn more money?

2. The Littleton Public Library gets 37 new magazines and books every week. In 2 weeks, about how many books and magazines will be received?

3. Last week, Ms. Llamas spent $62 for gas and $85 for repairs on her car. About how much did she spend on her car?

4. Raul cut 2 pieces of fabric. One piece was 12 inches long. Another piece was 41 inches long. Will Raul have enough fabric for a project that needs 67 inches of fabric? Explain.

5. About how much money would Katie need to buy the following items at the grocery store?

<table>
<thead>
<tr>
<th>Toy</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toy 1</td>
<td>32¢</td>
</tr>
<tr>
<td>Toy 2</td>
<td>24¢</td>
</tr>
</tbody>
</table>
Skills Practice

Problem-Solving Skill

Tell whether an estimate or an exact answer is needed. Then solve.

1. Chan is learning about dinosaurs. The head and body of Chan’s favorite dinosaur is 36 feet long, and the tail is 19 feet long. In all, how long is the entire dinosaur?

2. Jasmine and Casey are in charge of bringing fruit for the class picnic. There are 34 students in their class. Jasmine and Casey buy 11 apples, 6 oranges, 7 bananas, and 8 peaches. Will there be enough for everyone to have one piece of fruit? Explain.

3. For Exercise 2, use estimation to see whether or not Jasmine and Casey will have enough fruit for the class. Is estimation a good way to solve this problem?

4. There are 75 chairs at the concert. Four chairs are broken. How many people can sit on chairs at the concert?

5. Twenty-six babies are born every day at the Pine Valley Hospital. In 2 days, about how many babies will be born there?
Estimation can be a very useful tool. The Corner News Stand sold 122 newspapers on Monday and 94 newspapers on Tuesday. About how many newspapers were sold in all? Rounding will help you find the answer to this problem.

<table>
<thead>
<tr>
<th>Corner News Stand</th>
<th>Actual amount</th>
<th>Round to the nearest 100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>122</td>
<td>100</td>
</tr>
<tr>
<td>Tuesday</td>
<td>94</td>
<td>100</td>
</tr>
<tr>
<td>Estimated Total</td>
<td></td>
<td>200</td>
</tr>
</tbody>
</table>

About 200 newspapers were sold on these two days.

Front-end estimation is another way to find an approximate sum. At the community center, 36 people are swimming and 54 people are playing golf. About how many people are there in all?

Use the front digits, and change the other digits to 0.

$$36 \rightarrow 30 \quad 54 \rightarrow 50$$

$$30 + 50 = 80$$

So, there are about 80 people at the community center.

Estimate each sum using rounding.

1. $49¢ + 23¢$
2. $59 + 32$

Estimate each sum using front-end estimation.

3. $77 + 66$
4. $26 + 59$
Estimate each sum using rounding.

1. $95 + 31$
2. $16 + 12$
3. $90 + 85$
4. $39 + 78$
5. $42 + 61$
6. $22 + 84$

Estimate each sum using front-end estimation

7. $50 + 86$
8. $47 + 24$
9. $98 + 81$
10. $45 + 85$
11. $24 + 76$
12. $83 + 31$

Solve.

13. Kayla collects animal pictures. So far, she has 27 horse pictures and 12 pictures of bears. About how many pictures does she have now?

14. This week the school store sold 39 pencils and 12 folders. About how many pencils and folders did the school store sell this week?
Reteach

Two-Digit Addition

The left side of a two-digit number tells us how many tens we have, while the digit on the right shows how many ones we have.

For example, if you have 34 marbles, you have 3 groups of ten marbles and 4 marbles.

If a friend gives you 7 more marbles, you can add 6 of them to your group of 4 marbles (4 + 6 = 10) to make another ten-marble group. Since (7 − 6 = 1), you will have one marble left over. Using your pencil, add the marbles to the chart above.

Looking at the chart, it is easy to see that you now have 41 marbles.

Add. Check for reasonableness.

1. 37 + 2 = ____________
2. 18 + 36 = ____________
3. 41 + 6 = ____________
4. 33 + 16 = ____________
5. 12 + 19 = ____________
6. 50 + 8 = ____________
7. 52 + 9 = ____________
8. 66 + 6 = ____________
9. 43 + 9 = ____________
10. 77 + 3 = ____________
11. 34 + 7 = ____________
12. 51 + 11 = ____________
Add. Check for reasonableness.

1. $32 + 12 = \underline{\hspace{2cm}}$
2. $12 + 17 = \underline{\hspace{2cm}}$
3. $45 + 25 = \underline{\hspace{2cm}}$
4. $38 + 16 = \underline{\hspace{2cm}}$
5. $31 + 22 = \underline{\hspace{2cm}}$
6. $29 + 50 = \underline{\hspace{2cm}}$

ALGEBRA Find each missing digit.

7. $72 + 2 \underline{\hspace{2cm}} = 94$
8. $3 \underline{\hspace{2cm}} + 37 = 76$
9. $\underline{\hspace{2cm}} 0 + 46 = 96$
10. $83 + 3 \underline{\hspace{2cm}} = 121$
11. $\underline{\hspace{2cm}} 6 + 54 = 150$
12. $5 \underline{\hspace{2cm}} + 27 = 84$
13. $\underline{\hspace{2cm}} 4 + 31 = 75$
14. $11 + \underline{\hspace{2cm}} 6 = 97$

Solve.

15. For a family picnic, Javier bought 18 peaches, and his sister bought 24 apples. How many pieces of fruit did they buy?

16. Alondra’s science class planted 29 zinnia seeds and 31 marigold seeds. What is the total number of seeds they planted?
Add Money

When you add cents, it is just like adding one- or two-digit numbers, except that you put a cent sign (¢) after each number. Adding dollars is just the same, but a dollar sign ($) is written before each number.

Samantha opened her piggy bank and found 75¢ inside. If she has 8¢ in her pocket, how much money does she have?

Add 75¢ + 8¢.

A. Here is one way to find the sum.

\[
\begin{array}{c}
1 \\
75¢ \\
+ 8¢ \\
\hline
83¢
\end{array}
\]

B. Here is another way to write the problem. Use a decimal point to separate dollars and cents. Notice that 8¢ is now written $0.08, because there is nothing in the tenths (dimes) place.

\[
\begin{array}{c}
1 \\
$0.75 \\
+ $0.08 \\
\hline
$0.83
\end{array}
\]

Samantha has a total of 83¢.

Add. Use estimation to check for reasonableness.

1. \[12¢ + 77¢\]
2. \[45¢ + 27¢\]
3. \[\$0.01 + \$0.49\]
4. \[\$65 + \$16\]
5. \[\$15 + \$23\]
6. \[\$28 + \$31\]
Add. Use estimation to check for reasonableness.

1. $83¢ + 12¢ = _____
2. $45¢ + 45¢ = _____
3. $72 + $14 = _____
4. $0.33 + $0.27 = _____
5. $0.50 + $0.01 = _____
6. $0.05 + $0.79 = _____
7. 23¢ + 26¢ = _____
8. $30 + $27 = _____
9. $70 + $12 = _____
10. 61¢ + 11¢ = _____
11. $0.23 + $0.38 = _____
12. $84 + $43 = _____

Solve. Use the table for Exercises 13 and 14.

<table>
<thead>
<tr>
<th>Clothing Outlet</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pullovers</td>
<td>$18</td>
</tr>
<tr>
<td>Tennis shoes</td>
<td>$25</td>
</tr>
<tr>
<td>Socks</td>
<td>$4</td>
</tr>
<tr>
<td>Swimsuits</td>
<td>$35</td>
</tr>
</tbody>
</table>

13. Lalia wants to buy a swimsuit and a pair of tennis shoes. How much would that cost?

14. Justin is buying a pullover and a pair of socks. How much will these cost?

15. Alanzo wants to buy a basketball that costs $15 and a T-shirt that costs $14. How much will he spend in all?
Reteach

Problem-Solving Investigation

The bookshelf at Sarah’s house has 3 shelves. Each shelf can hold 15 books. Sarah has 17 books. Ed has 19 books. Jen has 10 books. Will all of their books fit on the bookshelf?

There is a lot to organize and understand in this problem. Use a four-step plan.

Step 1
Understand

You know how many books each of the 3 shelves will hold, and how many books each person has.

Step 2
Plan

There is a lot of information, so make a table.

Step 3
Solve

<table>
<thead>
<tr>
<th>Shelf</th>
<th>Books on Shelf</th>
<th>Books left over?</th>
<th>Space on shelf?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelf 1</td>
<td>15</td>
<td>2</td>
<td>no</td>
</tr>
<tr>
<td>(Sarah)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelf 2</td>
<td>15</td>
<td>4</td>
<td>no</td>
</tr>
<tr>
<td>(Ed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shelf 3</td>
<td>10</td>
<td>0</td>
<td>yes—for 5 books</td>
</tr>
<tr>
<td>(Jen)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sarah has 2 books left over and Ed has 4 books left over.

\[2 + 4 = 6\]

There is room for 5 books on Jen’s shelf. Since 6 is greater than 5, all of their books will not fit.

Step 4
Check

Look back at the problem.
Reteach

Problem-Solving Investigation (continued)

15 + 15 + 15 = _____, so _____ books can fit on the bookshelf.

17 + 19 + 10 = ______. Since 46 > 45, one book will be left over.

Solve.

1. Students were growing plants in science class. So far, 4 plants have flowered: 2 plants have 3 flowers each, and 2 plants have 6 flowers each. Find the total number of flowers.

 __

2. Every year, Daniel’s mother volunteers about 245 hours in the hospital. In 2 years, about how many hours of volunteer work will she do?

 __

3. There are 15 cards in one box and 64 cards in another box. How many cards are there in all?

 __

4. There are 31 students in Miss Strom’s class and 27 students in Miss Wilson’s class. About how many students are there in all?

 __
Solve.

1. Delmar’s school has collected money for charity. They collected $47 from Mrs. Johnson’s class and $52 from Mr. King’s class. How much money do they have in all?

2. For Garrett’s birthday party, he is bringing 2 bags of cookies to school. Each bag contains 24 cookies. How many cookies are there in all?

3. Bill has $0.34 in his pocket. Amanda has $0.54 in her pocket. An apple costs $0.85. If they combine their money, can they buy the apple to share? Explain.

4. In one aquarium, there are 22 minnows. In another aquarium, there are 27 snails. About how many pond animals are there?
Three-Digit Addition

You can use models to add.
Add 267 + 46.

Step 1
Add the ones. Regroup if necessary.

\[
\begin{array}{c}
267 \\
\text{Think: 13 ones =} \\
+ 46 \\
\text{1 ten, 3 ones}
\end{array}
\]

Step 2
Add the tens. Regroup if necessary.

\[
\begin{array}{c}
11 \\
267 \\
\text{Think: 11 tens =} \\
+ 46 \\
1 \text{ hundred, 1 ten}
\end{array}
\]

Step 3
Add the hundreds. Regroup if necessary.

\[
\begin{array}{c}
11 \\
267 \\
\text{Think: 1 hundred +} \\
+ 46 \\
2 \text{ hundreds =} \\
3 \text{ hundreds}
\end{array}
\]

Find each sum. Use models to help.

1. \[
\begin{array}{c}
146 \\
+ 29
\end{array}
\]

2. \[
\begin{array}{c}
473 \\
+ 55
\end{array}
\]

3. \[
\begin{array}{c}
245 \\
+ 128
\end{array}
\]

4. \[
\begin{array}{c}
182 \\
+ 275
\end{array}
\]
Find each sum. Use estimation to check for reasonableness.

1. $5.75 + $1.85
2. 49 + 13
3. 342 + 208

Solve.
4. 661 + 99
5. $7.78 + $7.16
6. 144 + 67
7. 711 + 193
8. 682 + 39

9. For a PTA meeting at the Parkvale Elementary School, the principal has ordered 215 muffins and 155 bagels. How many muffins and bagels were there in all?

10. In February, Lucinda read a book that was 98 pages long. In March, she read a book that was 124 pages long. How many pages did she read in February and March?

11. Miranda’s sunflower plants grew 27 inches in the first month and 37 inches the second month. How tall were Miranda’s sunflowers after two months?
Adding two- and three-digit numbers is just like adding four-digit numbers.

Read the problem.
One mile is equal to 5,280 feet. Hunter went on a nature hike. First, he hiked one mile, and then he hiked another 1,323 feet. How many feet did he hike?
One way to find the sum is by regrouping. First, estimate to the nearest thousand.

\[
5,280 \rightarrow \quad \\
+ 1,323 \rightarrow \\
\quad =
\]

Now, find the exact answer.

Step 1
Add the ones.
0 + 3 = _____

Step 2
Add the tens.
8 + 2 = _____
Regroup as a hundred.

Step 3
Add the hundreds.
[1] + 2 + 3 = _____

Step 4
Add the thousands
5 + 1 = _____
So, Hunter hiked _____ feet on the nature hike.

Find each sum. Use estimation to check for reasonableness.

1. 349 + 1,223 ________

2. $48.28 + $31.84 ________

3. At Cliffside Park, there are 121 maple trees and 382 oak trees. How many trees are in the park?
Skills Practice

Add Greater Numbers

Find each sum. Use estimation to check for reasonableness.

1. $328 + 5,908$
2. $448 + 561$
3. $57.25 + 27.80$
4. $806 + 1,220$
5. $302 + 1,445$
6. $1,833 + 289$
7. $43.78 + 12.34$
8. $1.59 + 22.37$
9. $933 + 1,005$
10. $231 + 8,304$

Solve

11. In a survey, students were asked which job they would prefer. These were the results:

<table>
<thead>
<tr>
<th>Job</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientist</td>
<td>1,295</td>
</tr>
<tr>
<td>Writer</td>
<td>93</td>
</tr>
</tbody>
</table>

Estimate how many students participated in the survey.

12. Rachel is running in a cross-country race. She bought running shorts for $29.13 and running shoes for $42.93. How much did she spend?

13. Last year, Jake cleaned his room for 3,120 minutes and mowed the lawn for 305 minutes. How long did he work?
When you want to compare numbers, you subtract.

Example Find \(16 - 3\).

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Model 16.</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Subtract the ones.</td>
</tr>
<tr>
<td>(- 3)</td>
<td>6 ones (- 3) ones = 3 ones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>16</th>
<th>Subtract the tens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(- 3)</td>
<td>1 tens (- 0) tens = 1 ten.</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>So, (16 - 3 = 13).</td>
<td></td>
</tr>
</tbody>
</table>

When there are not enough ones to subtract from, you need to regroup.

Example Find \(14 - 8\).

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Model 14.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Subtract the ones.</td>
</tr>
<tr>
<td>(- 8)</td>
<td>8 ones (> 4) ones, so regroup.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Regroup 1 tens into 10 ones.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>10 ones + 4 ones = 14 ones</td>
</tr>
<tr>
<td>(- 8)</td>
<td>Subtract 14 ones (- 8) ones = 6 ones</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Subtract the tens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>0 tens (- 0) tens = 0 tens</td>
</tr>
<tr>
<td>(- 8)</td>
<td>06 So, (14 - 8 = 6).</td>
</tr>
</tbody>
</table>

Subtract. Check your answer.

1. \(37 - 3\)
2. \(49 - 7\)
3. \(82 - 9\)
4. \(31 - 6\)
5. \(77 - 8\)
6. \(63 - 9\)
7. \(54 - 3\)
8. \(22 - 1\)
3-1

Skills Practice
Two-Digit Subtraction

Subtract. Check your answer.

1. 68 – 9 = _____

2. 33 – 23 = _____

3. 75 – 6 = _____

4. 49 – 9 = _____

5. 22 – 3 = _____

6. 66 – 15 = _____

7. 85 – 3 = _____

8. 11 – 7 = _____

9. 37 – 28 = _____

10. 90 – 22 = _____

11. 55 – 6 = _____

12. 30 – 24 = _____

13. 17 – 13 = _____

14. 82 – 23 = _____

15. 47 – 8 = _____

16. 90 – 3 = _____

17. Tess has 42 jars of paint. She gave 13 jars to Penny. How many were left for herself?

18. Retta is 43 inches tall. Her brother is 52 inches tall. What is the difference in their heights?

19. Kiyo had $21 when she went to the shopping center. On her trip, she purchased a new alarm clock. If she returned home with $8, how much was the alarm clock?
To estimate a difference, round each number and then subtract.

Round to the nearest ten.

51 – 27
\[
\begin{array}{c}
50 - 30 = 20 \\
\end{array}
\]

Round to the nearest hundred.

913 – 496
\[
\begin{array}{c}
900 - 500 = 400 \\
\end{array}
\]

Estimate each difference. Show how you rounded.

1. 91 – 38
\[
\begin{array}{c}
90 - 40 = 50 \\
\end{array}
\]

2. 86 – 39
\[
\begin{array}{c}
80 - 40 = 40 \\
\end{array}
\]

3. 809 – 485
\[
\begin{array}{c}
800 - 500 = 300 \\
\end{array}
\]

4. 886 – 150
\[
\begin{array}{c}
800 - 200 = 600 \\
\end{array}
\]

5. 801 – 118
\[
\begin{array}{c}
800 - 200 = 600 \\
\end{array}
\]

6. 911 – 138
\[
\begin{array}{c}
900 - 200 = 700 \\
\end{array}
\]

Estimate. Round to the nearest ten.

7. 63 – 28

8. 82 – 69

9. 85 – 29

10. 63 – 19

Estimate. Round to the nearest hundred.

11. 709 – 371

12. 545 – 172

13. 924 – 115

14. 770 – 585
Estimate each difference using rounding.

1. $73 - 27$
2. $91 - 65$
3. $685 - 193$
4. $947 - 831$
5. $45 - 19$
6. $54 - 38$
7. $615 - 315$
8. $725 - 199$
9. $881 - 350$
10. $862 - 498$
11. $519 - 383$
12. $550 - 295$
13. $703 - 376$
14. $902 - 829$
15. $909 - 788$
16. $833 - 499$
17. $890 - 690$
18. $931 - 786$
19. $58 - 27$
20. $92 - 18$
21. $468 - 179$
22. $705 - 280$
23. $932 - 239$
24. $850 - 176$
25. $48 - 27$
26. $650 - 403$

Solve.

27. The tree in Sue’s backyard is 72 feet tall. The tree in Joe’s backyard is 87 feet tall. About how much taller is the tree in Joe’s backyard?

28. Amy’s favorite tree is 67 feet tall. Another tree is 35 feet shorter than Amy’s favorite tree. About how tall is the other tree?
Subtracting money is similar to subtracting whole numbers. Sometimes, you need to regroup. James wants to buy a toy car that costs $0.63. He only has $0.37. How much more money does he need to buy the car?

Cost: $0.63
Amount James has: $0.37

Regroup 63 as 5 tens and 13 ones

\[
\begin{align*}
5 & \quad 13 \\
\underline{0.63} & \quad \underline{0.37} \\
0.26 & \\
\end{align*}
\]

So, James needs $0.26 more to buy the car.

Subtract.

1. $0.87 - $0.38
2. $0.92 - $0.64
3. $0.35 - $0.16
4. $0.52 - $0.28
5. $0.69 - $0.55
6. $0.48 - $0.29
Skills Practice

Subtract Money

Subtract.

1. $0.38 - $0.29 = _____

2. 85¢ - 37¢ = _____

3. $0.58 - $0.42 = _____

4. 55¢ - 46¢ = _____

5. $0.74 - $0.36 = _____

6. $72 - $35 = _____

7. $0.88 - $0.44 = _____

8. $42 - $29 = _____

Solve.

9. Ross buys a game for $84. He gives the cashier $90. How much change does he get?

10. Tawana buys a toy for $66. She gives the cashier $80. How much change did the cashier give her?

11. Annie bought some shirts and paid with two $20-bills. The cashier gave Annie $16 in change. How much did the shirt cost?

12. Howard bought two sandwiches for $4 each. He gave the cashier two $5-bills. How much change did he get?
Reasonable Answers

After you solve a problem, it is important to check if your answer makes sense. One way to check if your answer is reasonable is to use estimates.

Use this exercise to learn more about checking whether an answer is reasonable.

Jorge has 243 baseball cards, and 198 cards are infielders. Jorge thinks he has about 50 outfielder cards. Is this reasonable?

| Understand | You know there are 243 cards.
You know that 198 cards are infielder cards.
You need to find out if 50 outfielder cards is a reasonable answer. |
|------------|--|
| Plan | Choose a strategy. You are finding part of a group.
You will estimate and subtract to find about how many cards are left.
You will also subtract to find the exact answer. |
| Solve | First, estimate by rounding to the nearest 10.
243 - 198 turns into 240 - 200 = 40
Then subtract. 243 - 198 = 45 |
| Check | Look back at the problem. Jorge’s guess was that he had 50 outfielder cards. That is close to the estimate of 40. Jorge’s guess is reasonable.
Also check your answer by working the problem backward:
45 + 198 = 243
Since 243 is the number you started your subtraction with, your answer is correct. |
Solve. Check for reasonableness.

1. Angel’s family is having dinner. The pizza delivery will cost $12. Angel has one $20-bill to pay for the pizza. Is it reasonable for Angel to expect about $10 in change from the delivery person? ______
 Use estimates to explain.

2. Holly wants to buy her 3 favorite movies. They cost $19, $16, and $18. She estimates that she will need $60 to buy the 3 movies. Is this a reasonable estimate? ______
 Explain.

3. Vanessa kicked the soccer ball at the goal 117 times yesterday. She kicked the ball 112 times today. Is it reasonable for Vanessa to say that she kicked the ball about 300 times? ______
 Explain.

4. Greg read 10 books last week and 12 books this week. Is it a reasonable estimate to say that he read 20 books? ______
 Explain.

5. Adrian estimates that he will need to bring 90 cookies for the third-grade picnic. There are 32 students in room 1, 31 students in room 2, and 31 students in room 3. Is 90 cookies a reasonable estimate? ______
 Explain.

6. Jacqueline wants to buy a book and a CD. The book is $4. The CD is $13. She estimates $15 will be enough money. Is this a reasonable estimate? ______
 Explain.
3–4

Skills Practice

Problem-Solving Skill

Solve. Check for reasonableness.

1. On Monday 321 people came for a craft show. On Tuesday 619 people came. Is it reasonable to say about 300 more people came to the craft show on Tuesday? _____
 Explain. __

2. Seth’s class took a poll to find out what weekend activities people enjoy. The table below shows their answers.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>playground</td>
<td>8</td>
</tr>
<tr>
<td>movie</td>
<td>4</td>
</tr>
<tr>
<td>friend over</td>
<td>12</td>
</tr>
<tr>
<td>be with family</td>
<td>8</td>
</tr>
</tbody>
</table>

Seth estimated that about half his class likes to spend time with their families. Is this reasonable? _____
 Explain. __

3. Using Seth’s class poll, is it reasonable to say that most of the class likes to have friends over or spend time with family? _____
 Explain. __

4. Dominique called her grandmother 17 times in July. She estimates that she called about half the days in July. Is this reasonable? _____
 Explain. __
Reteach

Three-Digit Subtraction with Regrouping

You can use models to help you regroup when you subtract.

Use models to subtract.

1. \(245 - 19 = \) ______
2. \(193 - 44 = \) ______
3. \(435 - 219 = \) ______
4. \(564 - 228 = \) ______
5. \(740 - 426 = \) ______
6. \(335 - 127 = \) ______

Subtract. Check your answer.

7. \(962 - 722 = \) ______
8. \(681 - 361 = \) ______
9. \(750 - 136 = \) ______
10. \(435 - 219 = \) ______
11. \(865 - 839 = \) ______
12. \(942 - 927 = \) ______
Skills Practice

Three-Digit Subtraction with Regrouping

Subtract. Check your answer.

1. 597 - 318 = _____

2. 270 - 121 = _____

3. 464 - 128 = _____

4. 743 - 206 = _____

5. 632 - 427 = _____

6. 560 - 335 = _____

7. 823 - 426 = _____

8. 936 - 319 = _____

9. 448 - 329 = _____

10. 840 - 321 = _____

ALGEBRA Find each missing digit.

11.

\[
\begin{array}{c}
51 \\
- 31 \\
\hline
19
\end{array}
\]

12.

\[
\begin{array}{c}
32 \\
- 29 \\
\hline
13
\end{array}
\]

13.

\[
\begin{array}{c}
11 \\
- 22 \\
\hline
32
\end{array}
\]

14.

\[
\begin{array}{c}
74 \\
- 15 \\
\hline
58
\end{array}
\]

15.

\[
\begin{array}{c}
36 \\
- 18 \\
\hline
68
\end{array}
\]

16.

\[
\begin{array}{c}
42 \\
- 31 \\
\hline
12
\end{array}
\]
Sometimes you can solve a problem using more than one strategy. You must choose the strategy that works best for you when solving the problem.

Use this exercise to learn more about choosing a strategy to solve a problem.

Tristan has $4.35. If he buys a ball for $2.13, how much money does he have left?

Understand

What do you know?
- You know Tristan has $4.35.
- You know Tristan spent $2.13.

What do you need to find?
- You need to find out how much money Tristan has left.

Plan

A four-step plan is a good way to solve many problems.

When you read the problem to find out what information you know, circle key facts or words and underline what you need to find out.

Since you need to find how much money is left, subtract.

Solve

First take the money Tristan started with: $4.35
Subtract what he spent: $2.13
To find what is left: $4.35 − $2.13 = $2.22

Check

Prove your answer:
Look at the problem again. Work backward to check:
$2.22 + $2.13 = $4.35
Reteach

Problem-Solving Investigation (continued)

Practice

Use any strategy shown below to solve. Tell what strategy you used.

- Estimate or an exact answer
- Reasonable answer
- Four-Step Plan

1. The animal shelter rescued 57 animals after the storm.
 Now there are 862 animals at the shelter.
 How many animals were there before the storm? _____________
 What strategy did you use? ____________________________________

2. Mrs. Connolly hid 115 prizes around the school. She gave her students clues to solve. Her students found 82 prizes. About how many prizes are still missing? _____________
 What strategy did you use? ____________________________________

3. Two cans of paint come in a box. Trevor saw a sign that says each can of paint costs $27. About how much will the box of paints cost? _____________
 What strategy did you use? ____________________________________

4. Natalie started the day with 178 bags of trail mix.
 Now she has 50 bags of trail mix left. Is it reasonable to say she gave away about 130 bags of trail mix? _____________
 What strategy did you use? ____________________________________

5. Connor’s grandfather gave him 87 baseball cards. Now he has 576 cards. How many cards did he have before his grandfather gave him more cards? _____________
 What strategy did you use? ____________________________________

6. Sabrina has $8.35. She spent $6.74 at the store.
 How much money does she have left? _____________
 What strategy did you use? ____________________________________
Skills Practice

Problem-Solving Investigation

Use any strategy shown below to solve. Tell what strategy you used.

- Estimate or an exact answer
- Reasonable answer
- Four-Step Plan

1. Mariah earned 43 ribbons from swim meets this month.
 Now she has 756 ribbons in all. How many ribbons did she have before this month? __________
 What strategy did you use? ________________________

2. Brad walks up 53 steps to get home. There are 211 steps to the top of his building. How many more steps would Brad have to walk up to get to the top floor? _________
 What strategy did you use? ________________________

 What strategy did you use? ________________________

4. Blake has saved 612 papers since his first day of school. His sister has saved 48 papers so far. About how many more papers has Blake saved? __________
 What strategy did you use? ________________________

5. Mrs. Martinez bought groceries for $47.
 Then she bought pet food for $26. She thinks she spent about $100. Is this reasonable? __________
 What strategy did you use? ________________________
Find $6,426 - 3,278$.

Subtract the ones.
Regroup if necessary.
2 tens 6 ones = 1 ten 16 ones

Subtract the tens.
Regroup if necessary.
4 hundreds 1 ten = 3 hundreds 11 tens

Subtract the hundreds and thousands.

<table>
<thead>
<tr>
<th>Thousands</th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
<td>11</td>
<td>16</td>
</tr>
<tr>
<td>– 3</td>
<td>2</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>= 3</td>
<td>1</td>
<td>4</td>
<td>8</td>
</tr>
</tbody>
</table>

Subtract. Check each answer.

1. $4,685 - 1,279 = ______$
2. $9,354 - 1,953 = ______$
3. $6,527 - 432 = ______$
4. $8,711 - 7,338 = ______$
5. $6,345 - 5,732 = ______$
6. $8,832 - 448 = ______$
7. $4,213 - 2,999 = ______$
8. $9,595 - 1,396 = ______$
9. $6,762 - 3,883 = ______$
10. $9,136 - 457 = ______$
11. $8,447 - 4,191 = ______$
12. $6,229 - 5,337 = ______$
13. $8,674 - 482 = ______$
14. $1,373 - 998 = ______$
15. $7,147 - 2,639 = ______$
16. $9,521 - 3,587 = ______$
17. $5,212 - 1,999 = ______$
18. $6,222 - 2,730 = ______$
19. $8,315 - 798 = ______$
20. $7,445 - 655 = ______$
21. $4,123 - 1,432 = ______$
22. $3,228 - 625 = ______$
Skills Practice

Subtract Greater Numbers

Subtract. Check your answer.

1. 6,387 − 192
2. 6,217 − 3,860
3. 9,817 − 2,087
4. 1,754 − 382
5. 3,498 − 2,567

6. 4,891 − 975
7. 3,165 − 1,620
8. 9,315 − 4,928
9. 4,646 − 2,995
10. 6,635 − 669

11. 5,662 − 325
12. 8,250 − 766
13. 3,426 − 2,839
14. 5,163 − 3,886
15. 7,546 − 787

16. 4,998 − 3,912 = _________
17. 8,270 − 5,092 = _________
18. 5,123 − 987 = _________
19. 7,654 − 6,666 = _________
20. 4,325 − 998 = _________
21. 6,172 − 85 = _________
22. 6,286 − 5,375 = _________
23. 5,052 − 2,448 = _________

ALGEBRA Write + or − to make a true number sentence.

24. 8,734 + 4,292 = 4,442
25. 687 − 474 = 1,161
26. 8,132 + 983 = 9,115
27. 8,225 − 6,334 = 1,891

Solve.

28. On a parade float, there are 3,732 red roses and 1,850 white roses. How many more red roses are there?

29. Of the 4,258 roses on another float, 680 were wilted. How many were not wilted?

Reteach
Subtract Across Zeros

You can use place-value charts to help you regroup across zeros.

Find \(305 - 176\).

Step 1
Subtract the ones.
No tens to regroup.
Regroup the hundreds.

Step 2
Regroup the tens.

Step 3
Subtract the ones, tens, and hundreds.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>- 1</td>
<td>7</td>
<td>6</td>
</tr>
</tbody>
</table>

Subtract. Check your answer.

1. \(106 - 28\)
2. \(503 - 167\)
3. \(405 - 218\)
4. \(601 - 378\)
5. \(200 - 145\)
6. \(205 - 92\)
7. \(308 - 175\)
8. \(300 - 56\)
9. \(505 - 90\)
10. \(802 - 132\)
11. \(500 - 418\)
12. \(206 - 138\)
13. \(801 - 482\)
14. \(100 - 33\)
15. \(607 - 527\)
16. \(700 - 19\)
17. \(902 - 863\)
18. \(400 - 189\)
Skills Practice
Subtract Across Zeros

Subtract. Check your answer.

1. \[503 - 82 = \] 421
2. \[\$607 - \$238 = \$369\]
3. \[730 - 467 = \] 263
4. \[901 - 719 = \] 182
5. \[\$309 - \$223 = \$86\]

6. \[208 - 75 = \] 133
7. \[305 - 161 = \] 144
8. \[400 - 286 = \] 114
9. \[504 - 316 = \] 188
10. \[\$700 - \$199 = \$501\]

11. \[103 - 45 = \] 58
12. \[\$901 - \$333 = \$568\]

13. \[800 - 65 = \] 735
14. \[702 - 618 = \] 84

15. \[205 - 74 = \] 131
16. \[700 - 412 = \] 288

17. \[607 - 31 = \] 576
18. \[800 - 433 = \] 367

Solve.

19. A bag holds 300 seeds. Brandon plants 79 of the seeds. How many seeds are left?

 \[\text{seeds left} = 300 - 79 = 221\]

20. A book about gardening has 504 pages. Amy has read 245 pages so far. How many more pages does she have left to read?

 \[\text{pages left} = 504 - 245 = 259\]

21. The cafeteria has 300 chairs. There are only 271 people sitting in the chairs. How many chairs are empty?

 \[\text{chairs empty} = 300 - 271 = 29\]

22. There were 902 movie tickets at the ticket booth. Now, there are only 129 tickets left. How many tickets have been sold?

 \[\text{tickets sold} = 902 - 129 = 773\]
Algebra: Expressions and Number Sentences

An expression uses numbers and symbols to make a math statement. Here are some examples of expressions:

\[6 + 8 \quad 5 - 2 + 10 \quad 12 - 5 \]

A number sentence uses an equals sign to show that two expressions are equal. Here are some examples of true number sentences:

\[7 + 8 = 15 \quad 5 + 2 + 1 = 8 \quad 15 - 5 = 10 \]

Write an expression and a number sentence for each problem. Then solve.

1. A Douglas fir tree is 100 meters tall. A Ponderosa pine tree is 68 meters tall. How much taller is the Douglas fir than the Ponderosa pine?

 What is the expression?

 \[\text{expression} \]

 What is the number sentence?

 \[\text{number sentence} \]

 The Douglas fir is ________ meters taller than the Ponderosa pine.

2. Tony’s Garden Supplies sells $525 worth of plants. The store also sells $234 worth of supplies. How much money does the store make in all?

 \[\text{money} \]

3. A tree farm has 248 balsam fir trees and 96 Douglas fir trees. How many more balsam firs are there than Douglas firs?

 \[\text{more balsam firs} \]
Skills Practice

Algebra: Expressions and Number Sentences

Write an expression and a number sentence for each problem. Then solve.

1. A black spruce tree is 32 feet tall. An Engelmann pine tree is 110 feet tall. How much taller is the Engelmann pine than the black spruce?

2. A live oak tree is 48 feet tall. A California white oak tree is 42 feet taller. How tall is the California white oak?

3. The garden club raises $123 for a community garden. The club spends $78 on supplies. How much money does the garden club have left?

4. Nadia’s garden has a length of 45 feet and a width of 32 feet. How much longer is the length than the width?

Tell whether + or – makes each number sentence true.

5. $8 \bigcirc 1 = 4 + 3$

6. $521 + 10 = 20 \bigcirc 511$

7. $5 - 1 = 3 \bigcirc 1$

8. $701 \bigcirc 23 = 663 + 15$

9. $12 \bigcirc 5 = 10 + 7$

10. $16 + 14 = 50 \bigcirc 20$

11. $15 \bigcirc 9 = 3 + 3$

12. $75 \bigcirc 9 = 60 + 6$

13. $111 \bigcirc 11 = 50 + 50$

14. $94 \bigcirc 17 = 180 - 69$
When there is an equal number in each group, you can find the total by using repeated addition or multiplication.

Add: \(3 + 3 + 3 + 3 = 12\)

Find each total. Write an addition and a multiplication sentence.

1. \(6 + 6 + 6 = \text{_____}\)
 3 groups of 6 = \(\text{_____}\)
 \(3 \times 6 = \text{_____}\)

2. \(\text{_____ groups of ______ = ______}\)
 \(\text{_____} \times \text{_____} = \text{_____}\)

3. \(\text{_____ groups of ______ = ______}\)
 \(\text{_____} \times \text{_____} = \text{_____}\)

4. \(\text{_____ groups of ______ = ______}\)
 \(\text{_____} \times \text{_____} = \text{_____}\)
Write an addition and a multiplication sentence for each model.

1. 2. ________________

Multiply. Use repeated addition.

3. \(4 \times 6 = \) _____
4. \(2 \times 9 = \) _____
5. \(3 \times 7 = \) _____

6. \(6 \times 4 = \) _____
7. \(8 \times 3 = \) _____
8. \(5 \times 5 = \) _____

9. \(2 \times 8 = \) _____
10. \(6 \times 2 = \) _____
11. \(3 \times 9 = \) _____

Solve.

12. If Jason can collect 5 cans in one week, how many cans can he collect in 7 weeks?

13. Omar collected 8 cans of food on Monday, 8 cans of food on Tuesday, and 8 cans of food on Thursday. How many cans did he collect in all?

Find 2×3 and 3×2.

Using Models

Make 2 rows of 3 counters to show 2×3.

Using Paper and Pencil

<table>
<thead>
<tr>
<th>Number of rows</th>
<th>Number in each row</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>2×3</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Make 3 rows of 2 counters to show 3×2.

<table>
<thead>
<tr>
<th>Number of rows</th>
<th>Number in each row</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>3×2</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Draw lines to match the multiplication sentence with an array. Then use the Commutative Property to write a different multiplication sentence.

1. $5 \times 3 = 15$
2. $3 \times 6 = 18$
3. $5 \times 4 = 20$
Skills Practice
Arrays and Multiplication

Write the multiplication sentence for each array. Then multiply.

1.
2.
3.

Use the Commutative Property of Multiplication to find the missing number.

4. \(2 \times 3 = 6\)
 \[\quad \times 2 = 6\]
5. \(5 \times 0 = 0\)
 \[\quad \times 5 = 0\]
6. \(8 \times 6 = 48\)
 \[6 \times \quad = 48\]
7. \(7 \times 4 = 28\)
 \[\quad \times 7 = 28\]
8. \(2 \times 5 = 10\)
 \[5 \times \quad = 10\]
9. \(5 \times 9 = 45\)
 \[9 \times \quad = 45\]
10. \(8 \times 3 = 24\)
 \[3 \times \quad = 24\]
11. \(9 \times 4 = 36\)
 \[\quad \times 9 = 36\]
12. \(1 \times 8 = 8\)
 \[8 \times \quad = 8\]
13. \(7 \times 8 = 56\)
 \[\quad \times 7 = 56\]
14. \(6 \times 7 = 42\)
 \[\quad \times 6 = 42\]
15. \(9 \times 6 = 54\)
 \[6 \times \quad = 54\]
You can skip count on the number line to help you multiply two numbers.

Find 6×2. Think: 6 groups of 2 or 6 jumps of 2 spaces

Find 3×2. Think: 3 groups of 2 or 3 jumps of 2 spaces

Multiply. You may want to use a number line.

1. $4 \times 2 = \underline{8}$
2. $7 \times 2 = \underline{14}$
3. $2 \times 9 = \underline{18}$
4. $5 \times 2 = \underline{10}$
5. $2 \times 6 = \underline{12}$
6. $2 \times 3 = \underline{6}$
7. $2 \times 2 = \underline{4}$
8. $2 \times 4 = \underline{8}$
9. $9 \times 2 = \underline{18}$
10. $1 \times 2 = \underline{2}$
11. $8 \times 2 = \underline{16}$
12. $6 \times 2 = \underline{12}$
13. $2 \times 7 = \underline{14}$
14. $3 \times 2 = \underline{6}$
15. $2 \times 5 = \underline{10}$
16. $2 \times 8 = \underline{16}$
Skills Practice

Multiply by 2

Multiply. Draw a picture or use an array.

1. \[7 \times 2 \]
2. \[9 \times 2 \]
3. \[4 \times 2 \]
4. \[2 \times 7 \]
5. \[5 \times 2 \]
6. \[6 \times 2 \]
7. \[2 \times 1 \]
8. \[2 \times 9 \]
9. \[2 \times 2 \]
10. \[8 \times 2 \]
11. \[2 \times 6 \]
12. \[2 \times 4 \]

13. \[3 \times 2 = \]
14. \[2 \times 3 = \]
15. \[5 \times 2 = \]
16. \[2 \times 5 = \]
17. \[9 \times 2 = \]
18. \[2 \times 9 = \]
19. \[2 \times 8 = \]
20. \[2 \times 7 = \]
21. \[2 \times 4 = \]
22. \[6 \times 2 = \]
23. \[7 \times 2 = \]
24. \[8 \times 2 = \]
25. \[2 \times 2 = \]
26. \[2 \times 5 = \]
27. \[4 \times 2 = \]
28. \[7 \times 2 = \]
29. \[8 \times 2 = \]
30. \[1 \times 2 = \]

Write a multiplication sentence for each situation. Then solve.

31. The dancers in a ballet class rehearse for 3 hours each day. For how many hours will they rehearse from Tuesday through Saturday?

32. The beginner ballet class meets for 6 weeks Tuesday through Saturday. For how many days does the ballet class meet?
Find 4×5.

Using Models

Using Pencil and Paper

<table>
<thead>
<tr>
<th>Number of rows</th>
<th>Number in each row</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>20</td>
</tr>
</tbody>
</table>

Use the picture to find the product.

1. $4 \times 6 = \underline{24}$
2. $4 \times 5 = \underline{20}$
3. $4 \times 9 = \underline{36}$

Multiply.

4. $4 \times 7 = \underline{28}$
5. $4 \times 4 = \underline{16}$
6. $4 \times 3 = \underline{12}$
7. $3 \times 4 = \underline{12}$
8. $4 \times 2 = \underline{8}$
9. $4 \times 1 = \underline{4}$
10. $4 \times 6 = \underline{24}$
11. $9 \times 4 = \underline{36}$
12. $4 \times 8 = \underline{32}$
13. $7 \times 4 = \underline{28}$
14. $4 \times 9 = \underline{36}$
15. $2 \times 4 = \underline{8}$
16. $5 \times 4 = \underline{20}$
17. $6 \times 4 = \underline{24}$
18. $1 \times 4 = \underline{4}$
19. $4 \times 5 = \underline{20}$
20. $2 \times 4 = \underline{8}$
21. $4 \times 4 = \underline{16}$
Multiply. Draw a picture or use an array.

1. \(1 \times 4\)
2. \(8 \times 4\)
3. \(4 \times 2\)
4. \(5 \times 4\)
5. \(4 \times 9\)
6. \(4 \times 6\)

Multiply.

7. \(2 \times 4 = ____\)
8. \(4 \times 6 = ____\)
9. \(4 \times 4 = ____\)
10. \(8 \times 4 = ____\)
11. \(5 \times 4 = ____\)
12. \(7 \times 4 = ____\)
13. \(4 \times 2 = ____\)
14. \(6 \times 4 = ____\)
15. \(4 \times 5 = ____\)
16. \(4 \times 7 = ____\)
17. \(9 \times 4 = ____\)
18. \(4 \times 8 = ____\)
19. \(4 \times 1 = ____\)
20. \(4 \times 3 = ____\)
21. \(1 \times 4 = ____\)
22. \(4 \times 9 = ____\)
23. \(3 \times 4 = ____\)
24. \(4 \times 7 = ____\)

Write a multiplication sentence for each situation. Then solve.

25. There are 4 rows of 9 chairs in the room. How many chairs are in the room?

26. There are 4 rows of 7 students in a class photograph. How many students are in the photograph?
Math class starts at 10:00 A.M. and lasts for 55 minutes. Art class starts 5 minutes after math class ends. Art class ends at 11:45 A.M. How long is art class?

<table>
<thead>
<tr>
<th>Step 1 Understand</th>
<th>Make sure you understand the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What do you need to find? How long is art class?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2 Plan</th>
<th>Make a plan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Find out when art class begins and ends.</td>
</tr>
<tr>
<td></td>
<td>Find the necessary information.</td>
</tr>
<tr>
<td></td>
<td>Math starts at 10:00.</td>
</tr>
<tr>
<td></td>
<td>It lasts for 55 minutes.</td>
</tr>
<tr>
<td></td>
<td>Art starts 5 minutes later.</td>
</tr>
<tr>
<td></td>
<td>Art class ends at 11:45.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2 Solve</th>
<th>Carry out your plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Find when math class ends. 10:00 → 55 minutes later → 10:55</td>
</tr>
<tr>
<td></td>
<td>Art starts 5 minutes later. 10:55 → 5 minutes later → 11:00</td>
</tr>
<tr>
<td></td>
<td>How long is art class? 11:00 → 11:45 = 45 minutes</td>
</tr>
<tr>
<td></td>
<td>Art class is 45 minutes long.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4 Check</th>
<th>Check your answer.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Make sure you used the correct information.</td>
</tr>
</tbody>
</table>
Solve. If there is missing information, tell what facts you need to solve the problem.

1. Kirk practices the trumpet for 30 minutes on Tuesday, 45 minutes longer than that on Wednesday, and 30 minutes on Thursday. How much time does Kirk practice his trumpet in all?

2. Meg does spelling homework for 60 minutes and reading homework for 30 minutes. Her science homework takes 10 minutes longer than her reading homework. How long does she spend on her homework?

3. Samantha ate 4 servings of fruit every day for 7 days. Sometimes she ate strawberries, sometimes she ate peaches, and sometimes she drank orange juice. How many servings of fruit did Samantha eat?

4. Marcy is 3 inches taller than her sister. Her sister is 8 years old. How much taller is Marcy than her sister?

5. Elena has $20 to spend at the fair. She already knows that she wants to buy an item that costs $10. She also has to spend $4 total on travel to and from the fair. How much money will she have left to spend after she pays for these things?
Skills Practice

Problem-Solving Strategy

Solve. If there is missing information, tell what facts you need to solve the problems. If there is extra information, write it on the line provided.

1. Annie walks 3 minutes to her bus stop every morning and 3 minutes from the bus stop to her home after school. Her bus has 17 stops. How many minutes does Annie walk to and from the bus stop throughout five days?

2. There are 2,593 library books on the library shelves. About 1,000 of them are fiction. If 308 books are checked out, how many library books will be left?

3. Brandy sold 395 candles for a fund-raiser. How many more candles does Brandy need to meet her goal?

4. A movie theater has 200 seats. A movie is showing at 6:00. Suppose 133 people buy tickets. How many seats will be empty?
You can skip count on the number line to multiply by 5.

Find 4 × 5. Think: 4 groups of 5 or 4 jumps of 5

![Number line showing 4 jumps of 5](image)

\[4 \times 5 = 20 \]

Find 3 × 5. Think: 3 groups of 5 or 3 jumps of 5

![Number line showing 3 jumps of 5](image)

\[3 \times 5 = 15 \]

Multiply. You may want to use a number line.

1. \(2 \times 5 = \) _____
2. \(4 \times 5 = \) _____
3. \(7 \times 5 = \) _____
4. \(5 \times 5 = \) _____
5. \(5 \times 9 = \) _____
6. \(1 \times 5 = \) _____
7. \(6 \times 5 = \) _____
8. \(5 \times 2 = \) _____
9. \(5 \times 8 = \) _____
10. \(5 \times 6 = \) _____
11. \(3 \times 5 = \) _____
12. \(5 \times 1 = \) _____
13. \(5 \times 7 = \) _____
14. \(4 \times 5 = \) _____
15. \(6 \times 5 = \) _____
16. \(5 \times 3 = \) _____
17. \(8 \times 5 = \) _____
18. \(5 \times 8 = \) _____
19. \(9 \times 5 = \) _____
20. \(5 \times 7 = \) _____
21. \(5 \times 9 = \) _____
22. \(5 \times 4 = \) _____
23. \(3 \times 5 = \) _____
24. \(5 \times 5 = \) _____
Skills Practice

Multiply by 5

Multiply. Draw a picture or use an array.

1. \(5 \times 2\)
2. \(5 \times 9\)
3. \(10 \times 5\)
4. \(5 \times 5\)
5. \(8 \times 5\)

6. \(3 \times 5\)
7. \(5 \times 8\)
8. \(5 \times 6\)
9. \(7 \times 5\)
10. \(9 \times 5\)

11. \(5 \times 7\)
12. \(4 \times 5\)
13. \(2 \times 5\)

14. If there are 10 students and each student pays $5 to a fundraiser, how much total money will they donate?

15. For a craft each student will need 5 eggs. If there are 9 students, how many eggs will be needed?

16. For each game that Carla wins at the fair, she gets 5 tickets. Suppose Carla has 10 tickets and wins 4 more games. How many tickets will Carla have in all?

ALGEBRA Find each missing number.

17. \(5 \times _ = 55\)
18. \(_ \times 5 = 30\)
19. \(5 \times _ = 25\)
You can use models to help you multiply by tens.

<table>
<thead>
<tr>
<th></th>
<th>$1 \times 10 = 10$</th>
<th></th>
<th>$6 \times 10 = 60$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$2 \times 10 = 20$</td>
<td></td>
<td>$7 \times 10 = 70$</td>
</tr>
<tr>
<td></td>
<td>$3 \times 10 = 30$</td>
<td></td>
<td>$8 \times 10 = 80$</td>
</tr>
<tr>
<td></td>
<td>$4 \times 10 = 40$</td>
<td></td>
<td>$9 \times 10 = 90$</td>
</tr>
<tr>
<td></td>
<td>$5 \times 10 = 50$</td>
<td></td>
<td>$10 \times 10 = 100$</td>
</tr>
</tbody>
</table>

Multiply.

1. 10×2
2. 10×7
3. 10×8
4. 10×4
5. 10×9

6. $10 \times 3 = _____$
7. $10 \times 1 = _____$
8. $10 \times 7 = _____$

9. $10 \times 10 = _____$
10. $10 \times 6 = _____$
11. $10 \times 5 = _____$
Skills Practice

Multiply by 10

Multiply.

1. \[10 \times 3\]
2. \[10 \times 6\]
3. \[5 \times 10\]
4. \[10 \times 8\]
5. \[10 \times 1\]
6. \[10 \times 4\]
7. \[2 \times 10\]
8. \[10 \times 5\]
9. \[10 \times 7\]
10. \[10 \times 9\]

Solve.

For Exercises 20–22, use data from the pictograph.

20. How many votes did Yellowstone National Park get?

21. How many votes did the Everglades get?

22. How many people voted in the survey?

<table>
<thead>
<tr>
<th>Favorite National Park</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellowstone</td>
</tr>
<tr>
<td>Grand Canyon</td>
</tr>
<tr>
<td>Everglades</td>
</tr>
</tbody>
</table>

Key: Each \(\) stands for 10 votes.
George picked 24 ears of corn for a crab feast dinner. Penny pulled 39 crabs out of the trap to cook. There will be 16 family members having dinner. How many ears of corn are left if each family member eats one ear?

Step 1
Understand

Be sure you understand the problem.
What do you know
• George picked _____ ears of corn.
• There are _____ people eating ears of corn.
• Penny pulled _____ crabs out to cook.
• You need to find out how many _____.

Step 2
Plan

Make a plan
Choose a strategy.

You can draw a picture. Decide what facts you know. Plan what you will do and in what order. Use your plan to solve the problem. Then check your solution to make sure it makes sense.
Problem-Solving Investigation

Step 3 Solve

Carry out your plan.

Plan 1 Cross off the extra information you do not need from the problem.

You know that you need to find out how many ears of corn are left.

You do not need to know how many crabs Penny is going to cook.

Plan 2 Find the exact answer. Write a subtraction sentence.

\[24 - 16 = _
\]

Step 4 Check

Is the solution reasonable?

Reread the problem.

How can you check your answer?

Use any strategy shown below to solve. Tell what strategy you used.

PROBLEM-SOLVING STRATEGIES

- Act it out
- Draw a picture
- Look for a pattern

1. Patrick bought 5 books. Each book costs $7. How much change will he have left from a $50-bill?

2. Dave caught 7 fish. One fish broke the line and got away. Three fish were too small and he released them. How many fish did he bring home?
Skills Practice

Problem-Solving Investigation

Use any strategy shown below to solve. Tell what strategy you used.

PROBLEM-SOLVING STRATEGIES

- Act it out
- Draw a picture
- Look for a pattern

1. If there are 9 alligators and 2 chickens, how many legs are there altogether?

2. Steve bought 4 shirts. Each shirt cost $10. How much change would he receive from $40?

3. Elephants at the zoo each eat 5 bales of hay every day. If there are 3 elephants, how many bales of hay will they eat a day?

4. Christine collects dolls. She has 59 plastic dolls, 48 rubber bugs, 17 pairs of shoes, and 13 cloth dolls. How many total dolls does she have?

5. Annie made lemon squares. She cut each pan into 5 rows with 5 pieces. If she made two pans and ate five squares, how many squares are left?
Multiply.

Using Models
1 group of 4 stars = 4 stars
\[1 \times 4 = 4 \]

4 groups of 1 star = 4 stars
\[4 \times 1 = 4 \]

0 groups of 4 stars = 0 stars
\[0 \times 4 = 0 \]

4 groups of 0 stars = 0 stars
\[4 \times 0 = 0 \]

Identity Property of Multiplication
The product of a nonzero number and 1 is the number itself.

Zero Property of Multiplication
The product of a number and 0 is 0.

Multiply.

1. \[1 \times 0 = \]
2. \[5 \times 1 = \]
3. \[1 \times 8 = \]
4. \[0 \times 3 = \]
5. \[1 \times 7 = \]
6. \[0 \times 5 = \]
7. \[4 \times 0 = \]
8. \[1 \times 4 = \]
9. \[9 \times 0 = \]
10. \[6 \times 1 = \]
11. \[2 \times 1 = \]
12. \[0 \times 9 = \]
13. \[1 \times 6 = \]
14. \[2 \times 0 = \]
15. \[9 \times 1 = \]
16. \[0 \times 6 = \]
17. \[1 \times 2 = \]
18. \[5 \times 0 = \]
19. \[7 \times 1 = \]
20. \[0 \times 8 = \]
21. \[3 \times 1 = \]
22. \[1 \times 1 = \]
23. \[1 \times 9 = \]
24. \[0 \times 4 = \]
25. \[7 \times 0 = \]
26. \[8 \times 1 = \]
27. \[8 \times 0 = \]
Multiply by 0 and 1

Multiply.

1. \(5 \times 1 = \)
2. \(3 \times 0 = \)
3. \(8 \times 1 = \)
4. \(1 \times 7 = \)
5. \(0 \times 1 = \)
6. \(1 \times 8 = \)

7. \(0 \times 5 = \)
8. \(9 \times 0 = \)
9. \(0 \times 4 = \)

10. \(1 \times 4 = \)
11. \(1 \times 2 = \)
12. \(9 \times 1 = \)

13. \(1 \times 6 = \)
14. \(7 \times 1 = \)
15. \(1 \times 3 = \)

16. \(6 \times 0 = \)
17. \(0 \times 2 = \)
18. \(5 \times 1 = \)

ALGEBRA Find each missing number.

19. \(6 \times \) \(= 6\)
20. \(\) \(\times 9 = 0\)
21. \(1 \times \) \(= 1\)

22. \(\) \(\times 7 = 0\)
23. \(5 \times \) \(= 5\)
24. \(\) \(\times 4 = 0\)

25. \(8 \times \) \(= 8\)
26. \(\) \(\times 3 = 0\)
27. \(2 \times \) \(= 0\)

Write a multiplication sentence for each situation.

28. There is 1 row of 7 chairs in the back of the classroom. How many chairs are there?

29. There are 6 chairs around the table but no one is sitting in them. How many people are sitting in the chairs?
There are different ways to find answers for multiplication problems. One way is to use models to represent the problem.

Find 3×4.

Using Models

<table>
<thead>
<tr>
<th>Number of Groups</th>
<th>Number in Each Group</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

3 groups of 4 cubes

Using Paper and Pencil

<table>
<thead>
<tr>
<th>Number of Groups</th>
<th>Number in Each Group</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>12</td>
</tr>
</tbody>
</table>

3 groups of 4 cubes are equal to 12.

Use models to find the total number.

1. 3 groups of 5 =

2. 4 groups of 3 =

3. $4 \times 5 = $

4. 3 groups of 7 =

5. $3 \times 6 = $

6. $8 \times 3 = $

7. 3 groups of 3 =

8. 4 groups of 3 =

9. 3 groups of 2 =

10. 9 groups of 3 =

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Skills Practice

Multiply by 3

Multiply.

1. \(3 \times 10 = \) _____
2. \(5 \times 3 = \) _____
3. \(3 \times 8 = \) _____
4. \(6 \times 3 = \) _____
5. \(7 \times 3 = \) _____
6. \(3 \times 9 = \) _____
7. \(2 \times 3 = \) _____
8. \(1 \times 3 = \) _____
9. \(0 \times 3 = \) _____
10. \(3 \times 7 = \) _____
11. \(8 \times 3 = \) _____
12. \(3 \times 6 = \) _____
13. \(3 \times 5 = \) _____
14. \(4 \times 3 = \) _____
15. \(3 \times 4 = \) _____

ALGEBRA Complete each table.

17. | Rule: multiply by 3 |
<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

18. | Rule: multiply by 3 |
<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

Solve.

19. Jay has 3 bags of fruit. Each bag has 8 pieces of fruit. How many pieces of fruit does Jay have altogether?

20. Heather has 3 bags of pretzels. Each bag has 6 pretzels. How many pretzels does Heather have altogether?
Reteach

Multiply by 6

You can use facts that you already know to help you multiply by 6.

Find 7×6 by doubling 7×3.

\[
\begin{align*}
\text{7 groups of 6} &= 7 \times 3 + 7 \times 3 \\
7 \times 6 &= 7 \times 3 + 21 = 42
\end{align*}
\]

Write a multiplication sentence for the picture.

1.

Write a multiplication sentence for the picture.

2.

Write a multiplication sentence for the picture.

3.

Multiply.

4. $6 \times 3 = \underline{\hspace{1cm}}$

5. $6 \times 5 = \underline{\hspace{1cm}}$

6. $6 \times 6 = \underline{\hspace{1cm}}$

7. $6 \times 8 = \underline{\hspace{1cm}}$

8. $6 \times 1 = \underline{\hspace{1cm}}$

9. $6 \times 2 = \underline{\hspace{1cm}}$

10. $9 \times 6 = \underline{\hspace{1cm}}$

11. $6 \times 7 = \underline{\hspace{1cm}}$

12. $6 \times 4 = \underline{\hspace{1cm}}$

13. $3 \times 9 = \underline{\hspace{1cm}}$

14. $3 \times 3 = \underline{\hspace{1cm}}$

15. $7 \times 3 = \underline{\hspace{1cm}}$

16. $3 \times 5 = \underline{\hspace{1cm}}$

17. $3 \times 8 = \underline{\hspace{1cm}}$

18. $6 \times 3 = \underline{\hspace{1cm}}$
Multiply.

1. \(6 \times 5 = \)
2. \(6 \times 7 = \)
3. \(9 \times 6 = \)
4. \(3 \times 6 = \)
5. \(6 \times 6 = \)
6. \(7 \times 6 = \)
7. \(1 \times 6 = \)
8. \(6 \times 2 = \)
9. \(8 \times 6 = \)
10. \(10 \times 6 = \)
11. \(3 \times 6 = \)
12. \(6 \times 4 = \)
13. \(5 \times 6 = \)
14. \(6 \times 3 = \)
15. \(6 \times 8 = \)
16. \(6 \times 7 = \)
17. \(4 \times 6 = \)
18. \(6 \times 9 = \)

ALGEBRA Find each missing number.

19. \(5 \times \underline{\hspace{1cm}} = 30\)
20. \(9 \times \underline{\hspace{1cm}} = 54\)
21. \(8 \times \underline{\hspace{1cm}} = 24\)
22. \(6 \times \underline{\hspace{1cm}} = 42\)
23. \(6 \times \underline{\hspace{1cm}} = 48\)
24. \(9 \times \underline{\hspace{1cm}} = 27\)

ALGEBRA Find each rule.

25. Rule: Multiply by \(\underline{\hspace{1cm}}\)
26. Rule: Multiply by \(\underline{\hspace{1cm}}\)

<table>
<thead>
<tr>
<th>Rule: Multiply by</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>54</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule: Multiply by</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>6</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>56</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>64</td>
</tr>
</tbody>
</table>
Look for a Pattern

Liz created a castle with pink towers and blue flags. On the first tower, she has 2 flags. The second tower has 4 flags, and the third tower has 8. If she keeps the pattern up, how many flags are on the fourth tower?

Step 1
Understand

What do you know?
- There are 2 flags on the first tower.
- There are 4 flags on the second tower.
- There are 8 flags on the third tower.

What do you need to find out?
How many flags will be on the fourth tower?

Step 2
Plan

Organize the data in a table. **What are your columns?** The towers

What is in the row under each column? The number of flags

<table>
<thead>
<tr>
<th>Tower 1</th>
<th>Tower 2</th>
<th>Tower 3</th>
<th>Tower 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>⬇️⬇️</td>
<td>⬇️⬇️⬇️ ⬇️</td>
<td>⬇️⬇️⬇️ ⬇️️</td>
<td>?</td>
</tr>
</tbody>
</table>

Step 3
Solve the problem.

Think: What is added, subtracted or multiplied?

What is done to 2 to get 4? 2 was added to get 4 OR 2 was multiplied to get 4.

What was done to 4 to get 8? 4 was multiplied by 2.

What was done to both the first and the second number? They were both multiplied by 2.

Repeat the steps for tower 3 to check your rule. Then repeat for the fourth tower. Multiply 8 by 2. 16 flags will be on the fourth tower.

Step 4
Check

Look back at your answer. Does it make sense? Why?
Reteach

Problem-Solving Strategy (continued)

Practice by following the steps.

Fred is putting pictures in a scrapbook. He uses a pattern of groups of space and sports pictures. Each group has 1 space picture and 3 sports pictures. If the pattern continues, how many sports pictures will he use in all if there are a total of 24 pictures?

| Step 1 Understand | You know: There is 1 space picture in each group. There are 3 sports pictures in each group. ________________
| | You need to find out:
| | How many ________________ will be used?

| Step 2 Plan | Organize the data in a table. What are your columns? The groups. There are 4 pictures in each group and 24 pictures in all. 4 × _____ = 24. You need _____ columns.
| | What is in the row under each column? The number of space and sports pictures in each group.
	Group 1	Group 2	Group 3	Group 4	Group 5	Group 6
	1 space					
	3 sports	3 sports	3 sports	3 sports	3 sports	3 sports

| Step 3 Solve | Look for the pattern. Since the same group repeats, ___________ the number of sports pictures by 6.
| | Multiply 3 by 6.
| | 6 groups of 3 sports pictures equal _____ sports pictures.
Skills Practice

Problem-Solving Strategy

Solve. Use the look for a pattern strategy.

1. A dancer practices 3 days in a row and then takes one day off to rest. She has a show in two weeks. If she practices on the first 3 days, and takes the 4th day off, how many times will she practice in 14 days?

2. The concert hall offers specials on tickets. When you buy 5 tickets, you get 1 other ticket free. When you buy 10 tickets, you get 2 other tickets free. Lyddie got 4 tickets free. How many tickets did she buy?

3. The marching band lines up in rows. The first row has 2 people. The second row has 4 people. The third row has 6 people. If this pattern continues, how many people will be in the fifth row?

4. The Portsmouth Players perform 2 daytime shows and 3 evening shows per week. Their current play will run for 30 shows. How many of the shows will be daytime shows?

5. Ken takes piano lessons. The 1st week, he practices 20 minutes each day. The 2nd week, he practices 40 minutes each day. The 3rd week, he practices 1 hour each day. If this pattern continues, how many minutes will he practice each day in the 5th week?

6. A theater seat in the orchestra costs $32. A balcony seat costs $14. How much more does an orchestra seat cost than a balcony seat?
Multiply by 7

You can add on to a known fact to find a new fact.

Find 7×3 by finding $(6 \times 3) + (1 \times 3)$.

7 groups of 3 = 6 groups of 3 plus 1 group of 3
7×3 = 6×3 + 1×3
$= 18$

Write a multiplication sentence for the picture.

1.

2.

3.

Find each product.

4. $3 \times 7 = \underline{21}$
5. $5 \times 7 = \underline{35}$
6. $7 \times 7 = \underline{49}$

7. $8 \times 7 = \underline{56}$
8. $7 \times 6 = \underline{42}$
9. $7 \times 9 = \underline{63}$

10. $9 \times 7 = \underline{63}$
11. $4 \times 7 = \underline{28}$
12. $7 \times 1 = \underline{7}$

13. $6 \times 7 = \underline{42}$
14. $3 \times 7 = \underline{21}$
15. $0 \times 7 = \underline{0}$
16. $7 \times 4 = \underline{28}$
17. $1 \times 7 = \underline{7}$
18. $2 \times 7 = \underline{14}$
Skills Practice
Multiply by 7

Write multiplication sentences.
1. How many train cars?
2. How many fingers?

Multiply.
3. \[7 \times 3 \]
4. \[7 \times 6 \]
5. \[7 \times 9 \]
6. \[7 \times 7 \]
7. \[5 \times 7 \]
8. \[2 \times 7 \]
9. \[7 \times 4 = \]
10. \[7 \times 5 = \]
11. \[7 \times 1 = \]

ALGEBRA Complete the table.

12. Rule: Multiply by 7

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td></td>
</tr>
</tbody>
</table>

13. Rule: Multiply by 7

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>35</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
</tr>
</tbody>
</table>

Solve.

14. Jason read about trains for 2 hours each day for 1 week. How many hours did Jason read?
Reteach

Multiply by 8

You can use facts that you already know to help you multiply by 8.

Find 6×8 by doubling 6×4.

\[\begin{array}{ccc}
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\end{array} \]

\[\begin{array}{ccc}
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\end{array} \]

\[= \]

\[\begin{array}{ccc}
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\end{array} \]

\[+ \]

\[\begin{array}{ccc}
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} & \hat{\text{Hat}} \hat{\text{Hat}} \\
\end{array} \]

$6 \times 8 = 6 \times 4 + 6 \times 4$

\[= \]

$24 + 24 = 48$

Write a multiplication sentence for each picture.

1. ★★★★★★★★★
2. ☀️☀️☀️☀️☀️☀️☀️☀️

Multiply.

3. $2 \times 8 = _____$
4. $0 \times 8 = _____$
5. $8 \times 5 = _____$
6. $8 \times 6 = _____$
7. $8 \times 1 = _____$
8. $8 \times 7 = _____$
9. $5 \times 8 = _____$
10. $8 \times 4 = _____$
11. $3 \times 8 = _____$
Skills Practice

Multiply by 8

Multiply.

1. \(7 \times 8 = \) _____
2. \(5 \times 8 = \) _____
3. \(8 \times 7 = \) _____
4. \(8 \times 8 = \) _____
5. \(9 \times 8 = \) _____
6. \(8 \times 3 = \) _____
7. \(4 \times 8 = \) _____
8. \(6 \times 8 = \) _____
9. \(8 \times 10 = \) _____
10. \(8 \times 1 = \) _____
11. \(8 \times 0 = \) _____
12. \(8 \times 5 = \) _____
13. \(8 \times 4 = \) _____
14. \(8 \times 9 = \) _____
15. \(2 \times 8 = \) _____

ALGEBRA Find each missing number.

17. _____ \(\times 8 = 64 \)
18. _____ \(\times 6 = 48 \)
19. _____ \(\times 5 = 40 \)
20. _____ \(\times 8 = 24 \)
21. _____ \(\times 8 = 32 \)
22. _____ \(\times 8 = 56 \)
23. _____ \(\times 8 = 64 \)
24. _____ \(\times 8 = 48 \)
25. _____ \(\times 8 = 0 \)
26. _____ \(\times 9 = 72 \)

Solve.

27. Justin is going to a baseball game with 8 other boys. The tickets cost $5. How much will it cost for all 9 boys to watch the game?

28. Mike worked 8 hours washing cars for Mr. Smith. Mr. Smith paid him $4 an hour. How much did Mike earn?
Here is a strategy you can use when multiplying by 9.

You can multiply the number by 10 and then subtract the number to find a new fact.

Find 9×7.

\[
9 \text{ groups of } 7 = 10 \text{ groups of } 7 \text{ minus } 1 \text{ groups of } 7
\]

\[
9 \times 7 = 10 \times 7 - 1 \times 7 = 70 - 7 = 63
\]

Multiply.

1. 9×4
2. 9×5
3. 3×9
4. 9×7
5. 9×8
6. 6×9

7. $9 \times 2 = _____$
8. $5 \times 9 = _____$
9. $9 \times 4 = _____$

10. $6 \times 9 = _____$
11. $9 \times 3 = _____$
12. $9 \times 1 = _____$

13. $9 \times 9 = _____$
14. $9 \times 0 = _____$
15. $9 \times 8 = _____$

16. $2 \times 9 = _____$
17. $8 \times 9 = _____$
18. $3 \times 9 = _____$
Skills Practice

Multiply by 9

Multiply.

1. 9 \times 3
2. 9 \times 8
3. 4 \times 9
4. 9 \times 1
5. 9 \times 7
6. 9 \times 5

7. 9 \times 2
8. 5 \times 9
9. 9 \times 0
10. 9 \times 9
11. 9 \times 6
12. 8 \times 9

13. 2 \times 9 =
14. 4 \times 9 =
15. 9 \times 6 =

16. 8 \times 9 =
17. 9 \times 1 =
18. 7 \times 9 =

19. 3 \times 9 =
20. 9 \times 9 =
21. 9 \times 0 =

22. 9 \times 1 =
23. 7 \times 9 =
24. 5 \times 9 =

25. 2 \times 9 =
26. 0 \times 9 =
27. 9 \times 4 =

28. 8 \times 6 =
29. 3 \times 8 =
30. 6 \times 7 =

31. 6 \times 5 =
32. 7 \times 3 =
33. 5 \times 7 =

34. 9 \times 3 =
35. 8 \times 7 =
36. 9 \times 6 =

Solve.

37. Jordan saw 9 airplanes fly over his house every day last week. How many airplanes did Jordan see last week?

38. The Sports Cap Company sent 3 caps to each of the 9 starters on a baseball team. How many caps did the company send?
Choose a Strategy

Juan has pieces of wood. The first piece of wood is 8 inches. The second piece of wood is 16 inches. The third piece of wood is 24 inches. If this pattern continues, what will be the length of the twelfth piece of wood?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Be sure you understand the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand</td>
<td>What facts do you know?</td>
</tr>
<tr>
<td></td>
<td>• The first piece of wood is ____ inches.</td>
</tr>
<tr>
<td></td>
<td>• The second piece of wood is ____ inches.</td>
</tr>
<tr>
<td></td>
<td>• The third piece of wood is ____ inches.</td>
</tr>
<tr>
<td></td>
<td>What do you need to find?</td>
</tr>
<tr>
<td></td>
<td>• You need to find the length of</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Make a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Choose a strategy.</td>
</tr>
<tr>
<td></td>
<td>You can find the pattern.</td>
</tr>
</tbody>
</table>
| | You can also draw a picture. Show 12 pieces of wood. Use the pattern, and write the length of each piece next to the piece of wood.
Reteach

Problem-Solving Investigation (continued)

Step 3 Solve

<table>
<thead>
<tr>
<th>Plan 1</th>
<th>Plan 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carry out your plan.
Find the pattern.
8 16 24 The pattern is add 8.
+ 8 + 8</td>
<td>Draw a picture of 12 pieces of wood. Write the length next to each piece.
1 8 7 56
2 16 8 64
3 24 9 72
4 32 10 80
5 40 11 88
6 48 12 96</td>
</tr>
</tbody>
</table>

The twelfth piece of wood is _____ inches.

Step 4 Check

Is the solution reasonable?

Reread the problem.
How can you check your answer?

Solve.

1. Jim has 5 packs of cards. There are 15 cards in each pack. He gives 3 of his packs away. How many cards does he have left?

2. Winnie is making a quilt. The first section has 2 pieces of fabric. The second section has 5 pieces of fabric. The third section has 8 pieces of fabric. If this pattern continues, how many pieces of fabric will be in the eighth section of the quilt?

Figure 9.5 1: Proportional relationships. Plan 1: A sequence of 3 numbers. Plan 2: A sequence of 4 numbers.

Figure 9.5 1: Proportional relationships. Plan 1: A sequence of 3 numbers. Plan 2: A sequence of 4 numbers.
Skills Practice

Problem-Solving Investigation

Choose a strategy to solve the problem.

1. On Park Day, volunteers plant trees in the park. The first tree is 2 feet tall. The second tree is 4 feet tall. The third tree is 6 feet tall. Suppose this pattern continues. What will be the height of the fifth tree?

2. There are 8 rows of trees in the park. Each row has 8 trees. How many trees are there in all?

3. Jenny takes a photo of the town square. She makes a square frame for the photo. Each of the 4 sides of the frame is 9 inches long. How many inches around is the frame?

4. Some volunteers are building picnic tables. Each table uses 5 pieces of wood for the top, 2 pieces of wood for the sides, and 6 pieces of wood for the rest of the table. How many pieces of wood are needed to make 4 picnic tables?

Mixed Strategy Review

5. This year, a town sells tickets to the picnic to 252 adults and 518 children. Last year, there were 695 people at the picnic. How many more people are there this year than last year?

6. There are three groups of students making murals for the train station. Each group has 6 students. How many students are there in all?

7. Write a problem that you could solve by drawing a picture or by finding a pattern. Share it with others.
Reteach

Algebra: Associative Property

You can use the properties of multiplication to multiply 3 numbers.

Find $3 \times 2 \times 5$.

The Commutative Property of Multiplication

When multiplying, the order of the factors does not change the product.

<table>
<thead>
<tr>
<th>$3 \times 2 \times 5$</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2 \times 5 \times 3$</td>
<td>30</td>
</tr>
<tr>
<td>$5 \times 2 \times 3$</td>
<td>30</td>
</tr>
</tbody>
</table>

You can use the Commutative Property to switch the order of the numbers 3, 2, and 5.

The Associative Property of Multiplication

When multiplying, the grouping of the factors does not change the product.

<table>
<thead>
<tr>
<th>$3 \times 2 \times 5$</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>$3 \times (2 \times 5)$</td>
<td>30</td>
</tr>
<tr>
<td>$(3 \times 2) \times 5$</td>
<td>30</td>
</tr>
</tbody>
</table>

You can use the Associative Property to group two factors.

Find each product.

1. $5 \times 3 \times 2 = \underline{30}$
2. $2 \times 2 \times 6 = \underline{24}$
3. $7 \times 4 \times 1 = \underline{28}$
4. $3 \times 2 \times 3 = \underline{18}$
5. $5 \times 4 \times 2 = \underline{40}$
6. $7 \times 8 \times 0 = \underline{0}$
7. $2 \times 7 \times 2 = \underline{28}$
8. $3 \times 6 \times 2 = \underline{36}$
9. $8 \times 7 \times 1 = \underline{56}$
10. $3 \times 4 \times 2 = \underline{24}$
11. $6 \times 3 \times 3 = \underline{54}$
12. $6 \times 2 \times 3 = \underline{36}$
13. $8 \times 9 \times 0 = \underline{0}$
14. $6 \times 5 \times 0 = \underline{0}$
15. $9 \times 1 \times 5 = \underline{45}$

Find each missing number.

16. $5 \times 2 \times \underline{8} = 80$
17. $\underline{4} \times 2 \times 6 = 24$
18. $1 \times 7 \times 3 = \underline{21}$
19. $\underline{2} \times 2 \times 5 = 20$
Skills Practice

Algebra: Associative Property

Find each product.

1. \(2 \times 2 \times 6 = \) _____

2. \(1 \times 8 \times 4 = \) _____

3. \(9 \times 3 \times 2 = \) _____

4. \(3 \times 3 \times 1 = \) _____

5. \(5 \times 2 \times 4 = \) _____

6. \(9 \times 1 \times 0 = \) _____

7. \(6 \times 3 \times 1 = \) _____

8. \(8 \times 3 \times 2 = \) _____

9. \(4 \times \underline{\text{_____}} \times 4 = 32\)

10. \(5 \times \underline{\text{_____}} \times 1 = 45\)

11. \(\underline{\text{_____}} \times 6 \times 2 = 12\)

12. \(\underline{\text{_____}} \times 6 \times 1 = 12\)

13. \(3 \times \underline{\text{_____}} \times 4 = 24\)

14. \(6 \times 9 \times \underline{\text{_____}} = 0\)

15. \(1 \times \underline{\text{_____}} \times 3 = 15\)

16. \(5 \times \underline{\text{_____}} \times 3 = 60\)

Solve.

17. Tony and his friends had a pizza party. They bought 2 pizzas, each cut into 8 slices. Tony put 3 slices of banana pepper on each piece. How many slices of banana peppers did he use?

18. Tony also bought 3 packs of soda in cans. Each pack held 6 cans. How many cans of soda did Tony buy?

19. Which of the following does not belong with the other three?

\[
\begin{align*}
(1 \times 3) \times 2 & = 1 \times (3 \times 2) \\
6 \times 3 \times 2 & = 6 \times (3 \times 2) \\
2 \times (6 \times 1) & = (2 \times 6) \times 1 \\
5 \times (3 \times 1) & = (5 \times 5) \times 2
\end{align*}
\]
Reteach

Algebra: Find a Rule

A rule tells you what to do. This works in math too.

To build a boxcar, Bob needs to put 4 wheels on the corners of a wooden box. If he wanted to build 4 boxcars, how many wheels would he need?

Step 1 Find a pattern.

You know that 1 boxcar = 4 wheels.

So, 2 boxcars = 8 wheels.

The pattern or rule is to multiply by 4.

Step 2 Extend the pattern.

3 boxcars = 3 × 4 or 12 wheels.

3 × 4 = 12

4 boxcars = 4 × 4 = 16 wheels

So Bob needs 16 wheels.

Practice.

1. For every 2 wheels that Bob bought, the man in the store gave him 2 free wheels. When Bob bought 16 wheels, how many did he get free?

2. Write the rule for each table. Then, complete the table.

<table>
<thead>
<tr>
<th>Rule: ■</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>■</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule: ■</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule: ■</th>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>5</td>
<td>35</td>
<td></td>
</tr>
</tbody>
</table>

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Write the rule for each table. Then complete the table.

1. \[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
5 & 20 \\
7 & 28 \\
8 & 32 \\
\end{array}
\]

Rule: \[
\begin{array}{cccc}
\text{Input} & 4 & 7 & 8 \\
\text{Output} & 8 & 10 & 16 \\
\end{array}
\]

2. \[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
6 & 54 \\
8 & 63 \\
9 & 81 \\
\end{array}
\]

Rule: \[
\begin{array}{cccc}
\text{Input} & 7 & 10 & 9 \\
\text{Output} & 24 & 60 & 27 \\
\end{array}
\]

3. \[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
7 & 12 \\
9 & 18 \\
12 & _ \\
\end{array}
\]

Rule: \[
\begin{array}{cccc}
\text{Input} & _ & _ & _ \\
\text{Output} & _ & _ & _ \\
\end{array}
\]

4. \[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
10 & _ \\
6 & 18 \\
9 & 27 \\
\end{array}
\]

Rule: \[
\begin{array}{cccc}
\text{Input} & _ & _ & _ \\
\text{Output} & _ & _ & _ \\
\end{array}
\]

5. \[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
7 & _ \\
10 & 60 \\
8 & _ \\
\end{array}
\]

Rule: \[
\begin{array}{cccc}
\text{Input} & _ & _ & _ \\
\text{Output} & _ & _ & _ \\
\end{array}
\]

6. \[
\begin{array}{ccc}
\text{Input} & \text{Output} \\
3 & _ \\
6 & 12 \\
9 & _ \\
12 & _ \\
\end{array}
\]

Rule: \[
\begin{array}{cccc}
\text{Input} & _ & _ & _ \\
\text{Output} & _ & _ & _ \\
\end{array}
\]

Find a rule. Then extend the rule to solve.

10. On Monday, there were 5 flowers blooming in the garden. On Tuesday, there were 10 flowers blooming. There were 15 by Wednesday. By Friday, how many flowers were blooming?
Reteach

Relate Division to Subtraction

Cal put 18 astronaut collector’s cards in a scrapbook. He put 6 cards on each page. How many pages did Cal use?

Find 18 ÷ 6.

You can use repeated subtraction.

Divide. Use repeated subtraction.

1. 12 ÷ 4 = _____ 2. 20 ÷ 5 = _____ 3. 21 ÷ 7 = _____

Write how many times you need to subtract.

4. 8 ÷ 2 = __________ 5. 6 ÷ 3 = __________

6. 10 ÷ 5 = __________ 7. 12 ÷ 6 = __________

Divide.

8. 18 ÷ 3 = _____ 9. 24 ÷ 6 = _____ 10. 28 ÷ 7 = _____

11. 30 ÷ 6 = _____ 12. 8 ÷ 8 = _____ 13. 18 ÷ 3 = _____
Skills Practice

Relate Division to Subtraction

Write how many times you need to subtract.

1. \(10 \div 5 = \) __________

2. \(21 \div 3 = \) __________

3. \(24 \div 4 = \) __________

4. \(18 \div 3 = \) __________

5. \(30 \div 6 = \) __________

6. \(16 \div 2 = \) __________

Divide.

7. \(7 \div 7 = \) _____

8. \(18 \div 2 = \) _____

9. \(28 \div 4 = \) _____

10. \(32 \div 4 = \) _____

11. \(27 \div 9 = \) _____

12. \(36 \div 4 = \) _____

13. \(12 \div 2 = \) _____

14. \(16 \div 8 = \) _____

15. \(25 \div 5 = \) _____

16. \(28 \div 7 = \) _____

17. \(9 \div 9 = \) _____

18. \(20 \div 4 = \) _____

ALGEBRA Find each missing number.

19. \(25 \div \square = 5\)

20. \(\square \div 3 = 4\)

21. \(14 \div \square = 7\)

22. \(\square \div 4 = 8\)

Solve.

23. In Mr. Ryan’s class, 18 students write reports on stars. The students work in groups of 3. Each group hands in 1 report. How many reports on stars did the students hand in?

24. Janell pays $20 for 5 astronaut models. Each model costs the same amount. How much does each model cost?
Reteach
Relate Multiplication to Division

2 groups
4 in each group
8 in all

8 in all
4 in each group
2 groups

Number of groups	Number in each group	Number in all	Number in all	Number of groups	Number in each group
2 | 4 | 8 | 8 | 2 | 4

Complete.

1. 3 groups
4 in each group
_____ in all

3 \times 4 = _____

12 in all
3 groups

12 \div 3 = _____

2. _____ groups
_____ in each group
_____ in all

_____ \times _____ = _____

_____ groups
_____ in each group

_____ \div _____ = _____

3. _____ \times _____ = _____

_____ \div _____ = _____

4. _____ \times _____ = _____

_____ \div _____ = _____
Skills Practice

Relate Multiplication to Division

Write related multiplication and division sentences for each picture.

1.

2.

Write related multiplication and division sentences for each group of numbers.

3. 2, 6, 12
4. 3, 7, 21
5. 6, 6, 36

Write \(\times \) or \(\div \) to make each sentence true.

6. \(54 \bigcirc 9 = 6 \)
7. \(81 \bigcirc 9 = 9 \)
8. \(9 \bigcirc 5 = 45 \)

9. \(8 \bigcirc 4 = 32 \)
10. \(16 \bigcirc 8 = 2 \)
11. \(10 \bigcirc 1 = 10 \)
Choose an operation.

Sabrina’s class uses 24 rubber balls to make models of the planets in our solar system. There are 8 groups of students. Each group gets the same number of rubber balls. How many rubber balls does each group get?

Step 1 Understand
Make sure you understand the problem. What do you need to find? You need to find how many groups of _____ there are in _____.

Step 2 Plan
Choose the operation. You can use division. You can separate the rubber balls into equal groups.

Step 3 Solve
Carry out your plan. Write a division sentence.

Step 4 Check
Check your answer. You can use repeated subtraction.

Solve. Tell which operation you chose.

1. Three friends make a model of a space station. They spend $21 on supplies and split the cost equally. How much does each friend spend?

2. There are 32 people in line for the planetarium. There are only 8 tickets left. How many people will not get tickets?
Solve.

3. 12 friends are split into 3 groups of the same size. How many are in each group?

4. Jordan’s class has 27 students. If Jordan’s baking pan will make 9 brownies at a time, how many batches of brownies will he have to make?

5. Jerome and Katie have collected 7 seashells each. How many do they have in all?

6. If Dennis needs to collect 40 bottle caps in 5 days to win a prize, how many must he collect each day?

7. Mrs. Davis brought in 24 bananas to split evenly among the after-school art club. There are 8 people in the group including Mrs. Davis. How many bananas can they each eat?

8. A family of six purchased tickets to a play. If the total cost of the tickets was $54, how much did each ticket cost?
6–3
Skills Practice

Problem-Solving Strategy

Solve. Use the choose an operation strategy.

1. Paul is making a solar system notebook. Paul draws pictures of 8 planets. He draws 2 planets on each page. How many pages does he use?

2. Leroy has 15 pieces of clay. He will divide the clay equally to make models of 5 planets. How many pieces of clay will Leroy use to make each planet?

3. Naomi had 12 sun stickers. She gave 3 sun stickers to Jose. How many sun stickers does Naomi have left?

4. There are 45 children in the planetarium. They are sitting in rows of 9. How many rows of children are there?

Solve. Use any strategy.

5. Brian draws 16 constellations. He gives away 4 drawings. How many drawings does Brian have left?

6. Janice uses 17 stars to draw the constellation Andromeda. She uses 8 stars to draw the constellation Cepheus. How many more stars did Janice use in drawing Andromeda than in Cepheus?
Reteach

Divide by 2

You have 10 counters. How many groups of 2 can you make?

Think: 5 groups of 2 counters or $5 \times 2 = 10$

You can write $10 \div 2 = 5$, or $2)10$.

Complete.

1. $3 \times 2 = \underline{6}$

2. $9 \times 2 = \underline{18}$

3. $16 \div 2 = \underline{8}$

4. $14 \div 2 = \underline{7}$

5. $8 \div 2 = \underline{4}$

6. $6 \div 2 = \underline{3}$

7. $12 \div 2 = \underline{6}$

8. $4 \div 2 = \underline{2}$

Divide. Write a related multiplication fact.

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Divide by 2

Divide.

1. 4 ÷ 2 = _____ 2. 8 ÷ 2 = _____ 3. 20 ÷ 2 = _____
4. 14 ÷ 2 = _____ 5. 18 ÷ 2 = _____ 6. 10 ÷ 2 = _____
7. 12 ÷ 2 = _____ 8. 6 ÷ 2 = _____ 9. 16 ÷ 2 = _____
10. 22 ÷ 2 = _____

Divide. Use repeated subtraction on a number line.

11. 2⟌10 = _____ 12. 2⟌8 = _____

Divide. Write a related multiplication fact.

13. 14 ÷ 2 = ________________ 14. 2⟌10 = ________________
15. 2⟌20 = ________________ 16. 18 ÷ 2 = ________________

Solve.

17. Janet has a small pizza cut into 12 pieces. She wants to share the pizza equally with her friend. How many pieces should she give her friend?

18. There are 18 markers on the table. If Fred and Sam each get an equal amount, how many markers will each one get?

Reteach

Divide by 5

Think of a related multiplication fact to divide by 5.

<table>
<thead>
<tr>
<th>Number of groups</th>
<th>Number in each group</th>
<th>Number in all</th>
<th>Number of groups</th>
<th>Number in each group</th>
<th>Number in all</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>× 5</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.

15 ÷ 5 = ______

2.

10 ÷ 5 = ______

3.

5 ÷ 5 = ______

4.

25 ÷ 5 = ______

5. 30 ÷ 5 = ______

6. 35 ÷ 5 = ______

7. 20 ÷ 5 = ______

8. 5)25

9. 5)45

10. 5)40

11. 5)35

12. 5)20
Divide by 5

Divide.

1. \(25 \div 5 = \) ______
2. \(15 \div 5 = \) ______
3. \(10 \div 5 = \) ______
4. \(40 \div 5 = \) ______
5. \(30 \div 5 = \) ______
6. \(35 \div 5 = \) ______
7. \(5 \div 5 = \) ______
8. \(45 \div 5 = \) ______
9. \(20 \div 5 = \) ______
10. \(5 \div 15 = \) ______
11. \(5 \div 30 = \) ______
12. \(5 \div 35 = \) ______
13. \(5 \div 25 = \) ______
14. \(5 \div 20 = \) ______
15. \(5 \div 5 = \) ______
16. \(5 \div 45 = \) ______
17. \(5 \div 40 = \) ______

Solve.

18. Rudy spent $30 to buy 5 shuttle models. Each model costs the same amount. How much money did each model cost?

19. There are 40 people on the Space Rocket ride at the amusement park. Each car holds 5 people. All the cars are full. How many cars does the ride have?

20. Each magazine costs $5. Jeremy has $35. How many magazines can Jeremy buy?

21. There are 30 blueberries in a bowl. Gina and her four friends each eat the same number of blueberries. If they eat all of the blueberries in the bowl, how many will they each eat?

Choose a Strategy

Chaz is putting away his books. He has 5 mysteries, 6 novels, 3 picture books, and 2 dictionaries. He wants to put the same number of books on each shelf. His bookcase has 4 shelves. How many books should Chaz put on each shelf?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Understand</th>
</tr>
</thead>
<tbody>
<tr>
<td>You know: Chaz has 5 mysteries, 6 novels, 3 picture books, and 2 dictionaries. He wants to put away the same number on each of 4 shelves.</td>
<td></td>
</tr>
<tr>
<td>You need to find out: How many books should Chaz put on each shelf?</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Plan</th>
</tr>
</thead>
<tbody>
<tr>
<td>You need to look at how to arrange items. So, the draw a picture strategy is a good choice.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Solve</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draw a book case with 4 shelves. Write a letter to represent each kind of book. Fill the shelves until all the letters are used up. Count the number of books on each shelf.</td>
<td></td>
</tr>
<tr>
<td>MMNPD</td>
<td></td>
</tr>
<tr>
<td>MNNPD</td>
<td></td>
</tr>
<tr>
<td>MNNND</td>
<td></td>
</tr>
<tr>
<td>MNPD</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Check</th>
</tr>
</thead>
<tbody>
<tr>
<td>Look back at the problem. The total number of books is 16. Since 16 ÷ 4 = 4, you know the answer is correct.</td>
<td></td>
</tr>
</tbody>
</table>
Use any strategy shown below to solve. Tell what strategy you used.

- Act it out
- Draw a picture
- Look for a pattern

1. There are 25 people riding on a bus. If there were 5 stops and an equal number of people got on at each stop, how many people got on the bus at each stop?

2. If 6 people got on the bus at each stop for 3 stops, how many people in all are on the bus?

3. The first bus of the day brought 25 people to their destinations. The second bus of the day brought 18 people to their destinations. How many more people rode on the first bus than the second bus?

4. 14 children played the first game, 10 children played the second game, and 6 played the third. If this pattern continues, how many children played the fourth game?

5. Jan taught everyone the bunny hop dance. She said you take 3 hops forward, 4 hops back, 3 hops to the right, and 2 hops to the left. Lynne and Heather tried it out. If Lynne and Heather both did the dance, how many total hops did the two girls take?
Skills Practice

Problem-Solving Investigation

Use any strategy shown below to solve. Tell what strategy you used.

• Act it out
• Draw a picture
• Look for a pattern

1. Heather is planning a birthday party for her sister. If party favors cost $5 each and 10 people will be at the party, how much will Heather have to spend?

2. Heather chooses 6 red balloons, her brother chooses 4 yellow balloons, and her mother adds 6 blue ones. How many balloons will they have for the party?

3. Heather painted a pattern on the white paper tablecloth. She painted 3 red roses in the center. To the right of the roses, she painted a yellow daisy. To the left of the roses, she painted a bluebell. She repeated this pattern across the whole tablecloth. There are 15 red roses in all. How many yellow daisies are there?

4. Heather’s sister got 16 gifts. She divided her gifts into 2 equal groups, so she could carry them to her room. How many gifts were in each group?
Reteach

Divide by 10

You can use models to divide.

Divide $40 \div 10$.

Show 40 ones using models. Count the number of groups of ten.

<table>
<thead>
<tr>
<th>Show 40 ones using models.</th>
<th>Count the number of groups of ten.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>There are 4 groups of 10 in 40</td>
</tr>
<tr>
<td></td>
<td>So, $40 \div 10 = 4$.</td>
</tr>
</tbody>
</table>

Divide. You may use models.

1.

2.

3. $20 \div 10 = \underline{2}$

4. $40 \div 10 = \underline{4}$

5. $60 \div 10 = \underline{6}$

6. $90 \div 10 = \underline{9}$

7. $70 \div 10 = \underline{7}$

8. $80 \div 10 = \underline{8}$

9. $50 \div 10 = \underline{5}$

10. $10 \div 10 = \underline{1}$

11. $30 \div 10 = \underline{3}$

12. $10)\underline{10}$

13. $10)\underline{30}$

14. $10)\underline{20}$

15. $10)\underline{60}$

16. $10)\underline{80}$

17. $10)\underline{40}$

18. $10)\underline{90}$

19. $10)\underline{70}$

20. $10)\underline{50}$

21. $10)\underline{0}$
6–7

Skills Practice

Divide by 10

Divide.

1. \(70 \div 10 = \) _____
2. \(10 \div 10 = \) _____
3. \(60 \div 10 = \) _____

4. \(20 \div 10 = \) _____
5. \(30 \div 10 = \) _____
6. \(90 \div 10 = \) _____

7. \(50 \div 10 = \) _____
8. \(80 \div 10 = \) _____
9. \(40 \div 10 = \) _____

10. \(10 \longdiv{20} \)
11. \(10 \longdiv{50} \)
12. \(10 \longdiv{10} \)
13. \(10 \longdiv{0} \)
14. \(10 \longdiv{30} \)

ALGEBRA Solve. Find the missing number.

15. \(60 \div \underline{ } = 6 \)
16. \(\underline{ } \div 10 = 9 \)
17. \(80 \div 10 = \underline{ } \)

18. \(40 \div \underline{ } = 4 \)
19. \(\underline{ } \div 10 = 7 \)
20. \(50 \div 10 = \underline{ } \)

Solve.

21. Thirty people paddle down the river on rafts. Each raft holds 10 people. How many rafts are on the river?

22. The Christo family spends $70 on 10 fishing permits. How much does each permit cost?

23. You hike a total of 60 miles in 10 days. Each day you hike the same distance. How many miles do you hike each day?

24. A group of park visitors spends $50 for 10 tickets for a raft ride. How much does each ticket cost?

When you divide any number (except 0) by itself, the quotient is 1.

Kelly has 5 model rockets in 5 different boxes. How many model rockets are in each box?

\[5 \div 5 = 1 \]

There is 1 rocket in each box.

When you divide any number by 1, the quotient is the original number.

Kelly wants to put 1 model rocket on each shelf.

She has 5 model rockets. How many shelves does she need?

\[5 \div 1 = 5 \]

She needs 5 shelves.

When you divide 0 by any number (except 0), the quotient is 0.

Kelly has 3 boxes and no model rockets. How many rockets are in each box?

\[0 \div 3 = 0 \]

There are no rockets in any of the boxes.

Remember: You cannot divide a number by 0.

Divide.

1. \[4 \div 1 = _____ \]

2. \[4 \div 4 = _____ \]

3. \[0 \div 5 = _____ \]

4. \[9 \div 1 = _____ \]

5. \[3 \div 1 = _____ \]

6. \[6 \div 6 = _____ \]

7. \[0 \div 8 = _____ \]

8. \[7 \div 7 = _____ \]

9. \[6 \div 1 = _____ \]

10. \[0 \div 3 = _____ \]
Divide.

1. \(0 \div 3 = \) _____
2. \(5 \div 5 = \) _____
3. \(4 \div 1 = \) _____
4. \(9 \div 1 = \) _____
5. \(3 \div 3 = \) _____
6. \(5 \div 1 = \) _____
7. \(8 \div 8 = \) _____
8. \(0 \div 5 = \) _____
9. \(0 \div 7 = \) _____

10. \(5\overline{0}\)
11. \(7\overline{7}\)
12. \(4\overline{0}\)
13. \(1\overline{6}\)
14. \(2\overline{0}\)

15. \(4\overline{4}\)
16. \(1\overline{4}\)
17. \(5\overline{5}\)
18. \(3\overline{0}\)
19. \(6\overline{6}\)

ALGEBRA Write \(+\), \(-\), \(\times\), or \(\div\) to make the number sentence true.

20. \(7 \bigcirc 7 = 1\)
21. \(9 \bigcirc 9 = 0\)
22. \(6 \bigcirc 6 = 12\)
23. \(5 \bigcirc 1 = 5\)
24. \(0 \bigcirc 3 = 3\)
25. \(4 \bigcirc 4 = 1\)

Solve.

26. Jason buys 3 model rockets and shares them with 2 friends. How many rockets does each boy have?

27. Lisa has 3 key chains. If each chain holds 1 key, how many keys does Lisa have?

28. Myra draws and cuts out 8 planets for a class project. She pastes each planet on a separate sheet of paper. How many sheets of paper did Myra use?

29. Alonzo has 1 bookbag. It has 5 keychains on it. How many keychains does Alonzo have?
Reteach

Divide by 3

You can use models to divide.

Find $18 \div 3$. There are 18 stars in all. Make 3 groups with 6 stars in each group. $18 \div 3 = 6$

Divide.

1. $12 \div 3 = \underline{}$
2. $15 \div 3 = \underline{}$
3. $24 \div 3 = \underline{}$
4. $9 \div 3 = \underline{}$
5. $27 \div 3 = \underline{}$
6. $3 \div 3 = \underline{}$
7. $21 \div 3 = \underline{}$
8. $15 \div 3 = \underline{}$
9. $24 \div 3 = \underline{}$
10. $6 \div 3 = \underline{}$
11. $27 \div 3 = \underline{}$
12. $3 \div 3 = \underline{}$

13. $3)\underline{18}$
14. $3)\underline{21}$
15. $3)\underline{12}$
16. $3)\underline{27}$
17. $3)\underline{24}$
Skills Practice

Divide by 3

Divide.

1. \(18 ÷ 3 = \) _____
2. \(9 ÷ 3 = \) _____
3. \(6 ÷ 3 = \) _____

4. \(24 ÷ 3 = \) _____
5. \(3 ÷ 3 = \) _____
6. \(21 ÷ 3 = \) _____

7. \(12 ÷ 3 = \) _____
8. \(27 ÷ 3 = \) _____
9. \(15 ÷ 3 = \) _____

10. \(3\hat{)}12\)
11. \(3\hat{)}18\)
12. \(3\hat{)}6\)
13. \(3\hat{)}21\)

14. \(3\hat{)}27\)
15. \(3\hat{)}3\)
16. \(3\hat{)}15\)
17. \(3\hat{)}24\)

ALGEBRA Complete.

18. Rule: Divide by 3

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td></td>
</tr>
</tbody>
</table>

19. Rule: Multiply by 3

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>27</td>
</tr>
</tbody>
</table>

20. Rule: ________

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>

Solve.

21. Miss Gomez’s 21 third-grade students work in 3 equal groups to make models of a spacecraft. How many students are in each group?

22. Chuck and his 2 brothers read 15 books about the solar system. Each boy read the same number of books. How many books did each boy read?
To divide the total number of objects, you make equal groups.

There are 20 astronauts. Divide the number of astronauts by 4. To divide by 4, make equal groups of 4.

\[20 \div 4 = 5 \]

\[12 \div 4 = \underline{3} \]

\[24 \div 4 = \underline{6} \]

\[16 \div 4 = \underline{4} \]

\[32 \div 4 = \underline{8} \]

\[8 \div 4 = \underline{2} \]

\[16 \div 4 = \underline{4} \]

\[28 \div 4 = \underline{7} \]

\[36 \div 4 = \underline{9} \]

\[4 \div 4 = \underline{1} \]
7–2
Skills Practice

Divide by 4

Divide.

1. 12 ÷ 4 = _____
2. 8 ÷ 4 = _____
3. 20 ÷ 4 = _____

4. 28 ÷ 4 = _____
5. 24 ÷ 4 = _____
6. 4 ÷ 4 = _____

7. 36 ÷ 4 = _____
8. 32 ÷ 4 = _____
9. 16 ÷ 4 = _____

10. 4)16
11. 4)28
12. 4)4
13. 4)20
14. 4)40

15. 4)32
16. 4)8
17. 4)24
18. 4)36
19. 4)0

ALGEBRA Complete.

20. Rule: Multiply by 4

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

21. Rule: Divide by 4

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>8</td>
</tr>
<tr>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

22. Rule: __________

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>28</td>
<td>7</td>
</tr>
<tr>
<td>36</td>
<td>9</td>
</tr>
</tbody>
</table>

Solve. Use the data from the pictograph.

23. How many third-grade students went on the school trip?

24. There were 32 fourth-grade students on the school trip. How many symbols would you show on the graph for the fourth-grade students? Draw the symbols on the graph.

School Trip to the Planetarium

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Each person stands for 4 students.
Make a Table Strategy

Which day had the most sign-ups?

Sign Up: After-School Games

<table>
<thead>
<tr>
<th>Day</th>
<th>Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>Jim, Barry, Chris, Seth, Eli, Taylor</td>
</tr>
<tr>
<td></td>
<td>Ron, Tiffany, Josh, Donna, Bryan</td>
</tr>
<tr>
<td>Tuesday</td>
<td>Ann, Steve, Tara, Pete, Lily, Tara</td>
</tr>
<tr>
<td></td>
<td>Aiko, Warren, Ian, Craig, Sereka</td>
</tr>
<tr>
<td>Wednesday</td>
<td>Tod, Bailey, Carly, Sudi, Donna, Jani, Beth</td>
</tr>
</tbody>
</table>

Step 1

Understand

Be sure you understand the problem.

Read carefully.

What do you know?

- There are ______ days for after-school games.
- There is a list of ______ for each day.

What do you need to find out?

- You need to find out which day had

- To do this, you need to know ___________
 sign-ups there were each day.

Step 2

Plan

Make a plan.

A table can help you organize what you know. Make a table to solve the problem.
Problem-Solving Strategy (continued)

Step 3
Solve

Carry out your plan.

Make a table.
Tally the ____________ for each day. Write the total number of tallies for each day. Compare the ____________ for each day.

Complete the table.

<table>
<thead>
<tr>
<th>Sign-Up: After-School Games</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day</td>
</tr>
<tr>
<td>Monday</td>
</tr>
<tr>
<td>Tuesday</td>
</tr>
<tr>
<td>Wednesday</td>
</tr>
</tbody>
</table>

There are _____ sign-ups for Monday, _____ sign-ups for Tuesday, and _____ sign-ups for Wednesday. ____________ had the most sign-ups.

Step 4
Check

Is the solution reasonable?
Reread the problem.

Does your answer match the data given in the problem? ________________

What other strategy could you use to solve the problem? ________________

Solve. Use the *make a table* strategy.

1. Donna is making a sign that says “Greetings, Chess Masters!” Which letter does she use the most?

2. Four friends were in a tournament. Judy came in sixth, Sam was ninth, Tim was third, Evelyn was fifth. In what order did the friends finish?
Skills Practice
Problem-Solving Strategy

Organize the data below in a table.

<table>
<thead>
<tr>
<th>My Favorite Game</th>
<th>Game</th>
<th>Tally</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer: Jessica, Michael, Akiko, Taylor, Aretha, Jamal, Rick, Paula</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Board: Erica, Lauren, Mark, Andrew, Allison</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Card: Justin, Carl, Dixie, Ben</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use your table to solve problems 1 and 2.

1. Which game got the most votes?

2. Which game got the fewest votes?

For Exercises 3 and 4, use the shapes that Lorna drew.

3. How many more stars than circles did Lorna draw? Make a table in the box.

4. Suppose that Lorna draws 2 more squares. How many squares will she have then?
Reteach
Divide by 6 and 7

You can make groups to help you divide.

Suppose you have 28 wildflowers.
You want to make 7 groups of wildflowers.
How many wildflowers will you have in each group?

<table>
<thead>
<tr>
<th>Number in All</th>
<th>Number of Groups</th>
<th>Number in Each Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>7</td>
<td>4</td>
</tr>
</tbody>
</table>

So, $28 \div 7 = 4$.

Complete the division sentence for each picture.

1.

$30 \div 6 = \underline{5}$

2.

$35 \div 7 = \underline{5}$

Divide.

3. $54 \div 6 = \underline{9}$

4. $48 \div 6 = \underline{8}$

5. $56 \div 7 = \underline{8}$

6. $42 \div 6 = \underline{7}$

7. $28 \div 7 = \underline{4}$

8. $18 \div 3 = \underline{6}$

9. $30 \div 6 = \underline{5}$

10. $12 \div 6 = \underline{2}$

11. $42 \div 7 = \underline{6}$

12. $6 \overline{)24}$

13. $7 \overline{)21}$

14. $7 \overline{)63}$

15. $7 \overline{)35}$

16. $6 \overline{)36}$

17. $7 \overline{)49}$
Divide.

1. \(12 \div 6 = \) _____
2. \(35 \div 7 = \) _____
3. \(24 \div 6 = \) _____
4. \(7 \div 7 = \) _____
5. \(30 \div 6 = \) _____
6. \(42 \div 7 = \) _____
7. \(18 \div 6 = \) _____
8. \(56 \div 7 = \) _____
9. \(54 \div 6 = \) _____
10. \(48 \div 6 = \) _____
11. \(21 \div 7 = \) _____
12. \(63 \div 7 = \) _____
13. \(7\overline{)28} \)
14. \(6\overline{)36} \)
15. \(7\overline{)49} \)
16. \(6\overline{)24} \)
17. \(6\overline{)18} \)
18. \(6\overline{)48} \)
19. \(7\overline{)63} \)
20. \(7\overline{)21} \)
21. \(6\overline{)42} \)
22. \(7\overline{)14} \)
23. \(7\overline{)56} \)
24. \(7\overline{)42} \)
25. \(6\overline{)54} \)
26. \(6\overline{)30} \)
27. \(7\overline{)70} \)

ALGEBRA Compare. Write >, <, or =.

28. \(28 \div 7 \) \(5 \)
29. \(49 \div 7 \) \(5 \)
30. \(49 \div 7 \) \(8 \)
31. \(7 \div 7 \) \(6 \div 6 \)
32. \(42 \div 7 \) \(42 \div 7 \)
33. \(35 \div 7 \) \(30 \div 6 \)
34. \(24 \div 3 \) \(24 \div 6 \)
35. \(56 \div 8 \) \(9 \)
36. \(36 \div 6 \) \(54 \div 9 \)

Solve.

37. Alberto plants 42 tree seedlings in 6 rows. Each row has the same number of tree seedlings. How many rows of tree seedlings does Alberto plant?

38. Six park rangers take 54 people on a tour of Great Bear National Park. Each ranger has the same number of tourists. How many people are in each group?
Reteach

Divide by 8 and 9

Find $40 \div 8$.
Skip count to divide. So, $40 \div 8 = 5$.

![Number line with arrows showing division by 8]

Find $45 \div 9$.

![Number line with arrows showing division by 9]

Skip count on the number line to find the answer.
Draw arrows on the number line to show your work.
Then complete the number sentence.

1. $32 \div 8 = ____$

2. $36 \div 9 = ____$

Divide.

3. $48 \div 8 = ____$
4. $27 \div 9 = ____$
5. $56 \div 8 = ____$

6. $54 \div 9 = ____$
7. $81 \div 9 = ____$
8. $9 \div 9 = ____$

9. $72 \div 8 = ____$
10. $63 \div 9 = ____$
11. $45 \div 9 = ____$
Divide.

1. \(18 \div 9 = \) 2. \(24 \div 8 = \) 3. \(36 \div 9 = \)
4. \(72 \div 8 = \) 5. \(54 \div 9 = \) 6. \(40 \div 8 = \)
7. \(8 \div 8 = \) 8. \(27 \div 9 = \) 9. \(81 \div 9 = \)

10. \(8\sqrt{32}\) 11. \(9\sqrt{9}\) 12. \(9\sqrt{45}\) 13. \(8\sqrt{16}\) 14. \(9\sqrt{72}\)
15. \(9\sqrt{63}\) 16. \(8\sqrt{64}\) 17. \(9\sqrt{54}\) 18. \(8\sqrt{56}\) 19. \(8\sqrt{48}\)

ALGEBRA Complete the tables.

<table>
<thead>
<tr>
<th>Rule: Divide by 9.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
</tr>
<tr>
<td>Output</td>
</tr>
</tbody>
</table>

Solve.

22. How many third-grade students volunteered for the Clean-Up Squad?

23. If 56 fourth-grade students volunteer, how many symbols should you show on the graph? Draw the symbols.

Volunteer Clean-Up Squad

<table>
<thead>
<tr>
<th>Grade</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Each ♦ stands for 8 students.
Unit cost is the cost for one item. To find unit cost, use division.

Jason wants to buy 1 marker. The price for 5 markers is $0.50. How much will it cost to buy only one marker?

Step 1
What do you know?
- 5 markers cost 50¢.
- The total cost is 50¢.
- The number of items is 5.

Step 2
Divide the total cost by number of items.
- \(\frac{50}{5} = 10 \)
- It will cost 10¢ for one marker.

Find each unit cost.

1. 3 T-shirts for $27 ______
2. 2 hats for $12 ______
3. 4 gym shorts for $24 ______
4. 3 pairs of socks for $3 ______
5. 3 lunches for $6 ______

Solve.

6. Liz has $60 to buy 6 teddy bears. The teddy bears are $8 each. What is her change? ______
7. Cornbread muffins are $12 for a dozen. If Simon wants to buy 5 muffins, how much will they cost? ______
Find each unit cost.

1. 3 bananas for $3 ______
2. 6 apples for $6 ______
3. 1 pad of paper for $3 ______
4. 3 posters for $21 ______
5. 2 basketballs for $20 ______
6. 5 balloons for $5 ______

Find the unit cost to determine the better buy.

7. 5 teddy bears for $30
 2 teddy bears for $18 ________________________________

8. 10 tickets for $20
 3 tickets for $9 ________________________________

ALGEBRA Find the number of items.
Then, complete the table.

9.
<table>
<thead>
<tr>
<th>Number of Items</th>
<th>Input, Total Cost</th>
<th>Output, Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$40</td>
<td>$5</td>
</tr>
<tr>
<td></td>
<td>$32</td>
<td>$6</td>
</tr>
<tr>
<td></td>
<td>$56</td>
<td>$1</td>
</tr>
</tbody>
</table>
10. | Number of Items | Input, Total Cost | Output, Unit Cost |
 |-----------------|-------------------|------------------|
 | | $81 | $9 |
 | | $63 | $8 |
 | | $45 | |
Choose the best strategy.

Alicia wants to mail 12 letters and 5 postcards. A page of 6 stamps to mail letters costs $2, and a page of 5 stamps to mail postcards costs $1. Alicia has a $10-bill. How much change will she get after paying for the stamps?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>What do you know? You know that Alicia has 12 letters and 5 postcards to mail. You also know that it costs $2 for 6 letter stamps and $1 for 5 postcard stamps. Alicia will pay with a $10-bill.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>What do you need to find? How much change Alicia will get after paying for the stamps.</td>
</tr>
<tr>
<td>Step 2</td>
<td>Choose a strategy.</td>
</tr>
<tr>
<td></td>
<td>Making a table will help organize the facts. The table will have two columns, one for letter stamps and one for postcard stamps. The cost will be listed in the rows.</td>
</tr>
<tr>
<td></td>
<td>Then, total the cost and subtract it from $10 to find the amount Alicia will get back in change.</td>
</tr>
<tr>
<td>Step 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Letter Stamps</td>
</tr>
<tr>
<td></td>
<td>$2 for 6</td>
</tr>
<tr>
<td></td>
<td>$2 for 6</td>
</tr>
<tr>
<td></td>
<td>Total: $4 for 12 letter stamps + $1 for 5 postcard stamps = $5</td>
</tr>
<tr>
<td></td>
<td>$10 − $5 = $5</td>
</tr>
<tr>
<td></td>
<td>So, Alicia will get $5 in change.</td>
</tr>
</tbody>
</table>
Use any strategy shown below to solve. Tell what strategy you used.

- Act it out
- Draw a picture
- Look for a pattern
- Make a table

1. What is the next number in the pattern?

 53, 58, 63, 68, ____________.

2. Margie and Jill have 35 bottles of juice. Margie drinks 2 bottles a day, and Jill drinks 3.

 How many days will the juice last? ______________

3. Juan planted 20 seeds. For every 5 seeds he planted, 4 grew into plants. How many plants did Juan have?

Step 4 Check

- Look back at your answer. Does it make sense?

 Use division to check.

 Alicia will need 2 pages of letter stamps because $12 \div 6 = 2$. She will need 1 page of postcard stamps because $5 \div 1 = 1$.

 The cost for 2 pages of letter stamps and 1 page of postcard stamps is $2 + $2 + $1 = 5. The change for 5 from 10 is 5.

 So, the answer is correct.
Solve. Use any strategy.

1. **ALGEBRA** What is the next number in the pattern?
 50, 48, 46, 44, _____

2. Evita is arranging pictures on the wall. She put 3 pictures on the top row. Then, she put 6 pictures on the second row. She put 9 pictures on the third row. She continues this pattern for 2 more rows. How many pictures does Evita have in all?

3. Russ and Marty bought wood for a tree house. They bought 8 long pieces of wood. Each piece cost $5. How much did they spend altogether?

4. The boys have 8 long pieces of wood. They need 24 shorter pieces of wood of equal length. How many parts should they saw each long piece of wood into?

5. The boys bought 4 pounds of nails for $16. They got $4 in change. How much money did they start with?

6. The boys want to buy shingles for their roof, and they have $40 left. If they spend all of their money and get 10 shingles, how much did each shingle cost?
Reteach

Algebra: Expressions and Equations

An expression is a number sentence that contains numbers, variables, and at least one operation symbol.

An equation is a mathematical sentence that contains an equals sign.

Is \(2 + 3\) an expression? _____
Why? ___

Is \(= 5\) an expression? _____
Why? ___

Is \(2 + 3 = 5\) an equation? _____
Why? ___

Write an expression and create an equation for the situation.

1. In the playground, there are 2 swing sets with 3 swings for older children and 6 swing sets with 1 swing each for younger children. Write an expression that shows that younger children have the same amount of swings as the older ones.

Choose one of the symbols +, −, ×, or ÷ to make the equation true.

2. \(5 - 3 = 2\) 1

3. \(27 ÷ 3 = 3 \times 10\)

4. \(10 \bigcirc 20 = 30\)

5. \(49 ÷ 7 = 7\)
Write an expression and create an equation for each situation.

1. Juan had 8 train cars. He lost 2. Then he received 4 cars for his birthday. How many cars does Juan have now?

2. There are 20 action figures and 5 boys. If everyone has equal amounts, how many figures can each boy have to play with?

3. Alma has a collection of 25 dolls from around the world. She sold 2 dolls. Her aunt gave her a new set of 6 Japanese dolls. How many dolls does Alma have now?

Choose one of the symbols +, −, ×, or ÷ to make the equation true.

4. $25 \bigcirc 5 = 4 \times 5$
5. $80 - 8 = 9 \bigcirc 8$
6. $14 \div 2 = 6 \bigcirc 1$
7. $56 \bigcirc 6 = 10 \times 5$
8. $20 - 4 = 8 \bigcirc 2$
9. $4 \bigcirc 6 = 20 + 4$
10. $70 + 2 = 9 \bigcirc 8$
11. $18 \div 2 = 3 \bigcirc 3$

Find a number that makes the equation true.

12. $9 \times 3 = \text{______} + 2$
13. $9 \times 9 = 80 + \text{______}$
14. $3 \times 3 = \text{______} + 2$
15. $6 \times 9 = 50 + \text{______}$
16. $8 \times 3 = \text{______} + 2$
17. $4 \times 4 = \text{______} + 8$
Elena went to the beach 6 times this month. Dolores went to the beach 4 more times than Elena did. Write an expression that shows the amount of times Dolores went to the beach.

Step 1
Reread the problem and find the key words that will tell you what operation to use.

- Dolores went 4 *more* times
- The word *more* means addition.

Step 2
Put the numbers with the operation.

- Elena went 6 times. Dolores went 4 *more* times.
- $6 + 4 = 10$ Dolores went to the beach 10 times.

Write each phrase as an expression. Then solve.

1. the *difference* between 23 and 46 ________________
2. 56 *together with* 6 ________________
3. 3, 4, and 5 items *in all* ________________
4. 4 *less than* 12 ________________
5. the *product* of 4 and 5 ________________
6. 7 *times* 4 ________________
7. 18 *minus* 10 ________________
8. 20 *divided by* 4 ________________

Write equations for the situation. Then solve.

9. Jen fed the family dog once a day for 15 days. Her brother fed the dog twice a day for 10 days. Who fed the dog more?
Write each phrase as an expression. Then solve.

1. 8 boxes each with 0 books

2. the difference between 91 and 85

3. the total of 4 clubs with 10 students in each club

4. play checkers 2 times a week for 8 weeks

5. 45 fish divided equally among 9 tanks.

6. 89 less than 99

7. 6 more than 24

8. the product of 7 and 9

Write two word phrases for each expression.

9. 63 ÷ 9

10. 4 × 8

11. 10 ÷ 2

12. 7 × 6

13. 3 × 2

Write an expression for the situation. Then solve.

14. The school provided oranges for the swim team of 10 students. Ten oranges were bought, and each orange was cut into 6 sections. Each child only ate 4 sections. How many orange sections were left over?
Reteach

Length to the Nearest Half Inch

Remember that length is the measurement of distance between two end points. You can use almost anything to measure length.

Use the nonstandard unit of a penny to measure length.

Count the number of pennies.

The line is about 4 pennies long.

An inch is a standard unit. Use an inch ruler to measure length.

Place the ruler so that the left edge or the “0” mark lines up with the endpoint. Find the half inch mark nearest to the other endpoint.

The line is 3 inches long to the nearest half inch.

Measure to the nearest half inch. Write the length.

1.

2.

3.

4.

Use an inch ruler. Draw a line on a separate sheet of paper for each length.

5. 7 inches

6. 5 inches

7. 2 inches

8. 1 inch
Skills Practice

Length to the Nearest Half Inch

Measure each to the nearest half inch.

1.

2.

3.

4.

Use an inch ruler. Draw a line for each length.

5. $6\frac{1}{2}$ inches

6. $5\frac{1}{2}$ inches

7. $2\frac{1}{2}$ inches

8. $3\frac{1}{2}$ inches
Reteach

Customary Units of Length

You can use a ruler or yardstick to measure lengths.

This is 1 inch (in.).

A foot (ft) is 12 inches.
A telephone book is about 1 foot long.

A yard (yd) is 3 feet, or 36 inches.
A doorknob is about 1 yard above the floor.

Choose the most appropriate unit to measure each length.
Choose from inch, foot, yard, or mile.

1. length of a crayon

2. distance across a state

3. height of a wall

Choose the best estimate.

4. about 8 in.
 a telephone
 a desk top

5. about 1 yd
 a baseball
 a baseball bat

6. about 1 ft
 a computer keyboard
 a computer mouse

7. about 2 yd
 a door’s height
 a baby’s height

8. about 8 ft
 a room’s height
 your height

9. about 7 yd
 a parking sticker
 a parking space
Choose the best estimates.

1. length of a calculator
 6 inches or 6 yards

2. length of a notebook
 12 feet or 12 inches

3. distance between San Diego, CA and Houston, TX
 1,300 inches or 1,300 miles

4. width of a shoe
 3 inches or 3 feet

5. height of a truck
 6 inches or 6 feet

6. length of a shoe lace
 16 inches or 16 yards

Choose the most appropriate unit to measure each length.
Choose from inch, foot, yard, or mile .

7. length of a crayon

8. height of a door

9. distance from home to school

10. width of your bedroom

11. length of a football field

12. thickness of a book

Reteach

Problem-Solving Strategy

Joan buys some tickets. Each ticket costs $3. She gives the clerk $20 and gets $2 in change. How many tickets does Joan buy?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Make sure you understand the problem.</th>
</tr>
</thead>
</table>
| Understand | • What do you know?
Joan buys some tickets. Each ticket costs $3. She gives the clerk $20, and she gets $2 in change.
• What do you need to find?
How many tickets Joan buys. |

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Make a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>You can work backward to find the total.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Carry out your plan.</th>
</tr>
</thead>
</table>
| Solve | Find the total amount spent on tickets.
$20 − $2 = $18 Joan spent a total of $18.
Find the number of tickets by using division.
$18 total ÷ $3 per ticket = 6 tickets
Joan bought 6 tickets. |

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Check your answer.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
<td>Does it make sense?</td>
</tr>
</tbody>
</table>

Solve. Use the work backward strategy.

1. John’s dad bought pizzas for a party. He gave the cashier one $20-bill. The cashier gave him $5 in change. Each of the three pizzas cost the same amount. How much did each pizza cost?

2. On Saturday, Sam went to the library for 30 minutes. Then he went to his friend’s house for an hour. Afterwards, he played soccer for 45 minutes. He finished playing soccer at 5:45. What time did Sam go to the library?
3. Kevin gave 6 football cards to James and 7 football cards to Mike. He was given 25 more football cards for his birthday. Kevin now has 55 football cards. How many did he have to start with?

4. Sally rode her bike for 5 miles Monday, some miles on Tuesday, and 8 miles Wednesday. She did not ride any other days of the week. If she rode her bike 19 miles this week, how many miles did she ride on Tuesday?

5. After school Laura has band practice, then soccer practice for 1 hour. After that she goes to the library for an hour. If she arrives home 3 hours after school is out, how much time does she spend at band practice?

6. Mr. Johnson has pencils in a box for students to use. He let 6 students borrow pencils today and 8 students borrow pencils yesterday. He counts the pencils at the end of the day and finds that there are 20 pencils in the box. How many pencils did he have in the box at the beginning of the day yesterday?

7. Hakeem spends $100 of his money from his summer job on clothes and supplies for school. If he has $25 leftover, how much money did he have originally?

8. Daniel ran 17 miles this week. He ran the same number of miles on Tuesday as he did on Monday. He ran 3 miles on Wednesday and 4 miles on both Thursday and Friday. How many miles did he run on Monday?
Skills Practice

Problem-Solving Strategy

Solve. Use the work backward strategy.

1. Sarah biked for 20 minutes on Monday, for a while on Tuesday, and 25 minutes on Wednesday. During those three days, she biked a total of one hour. How much time did she bike on Tuesday?

2. On Mike’s four-day vacation, he took 25 photographs the first day and 41 photographs on the second day. On the third day, he took twice as many photographs as he did the first day. If he took a total of 151 photographs during the four days, how many did he take on the fourth day?

3. The garden club spent $23 on containers, $15 on seeds, and some money on soil. They spent $55 altogether. How much did they spend on soil?

4. Maria plants 48 flowers in rows. The first row has 3 flowers. The second row has 5. The third row has 7 flowers. The fourth row has 9 flowers. This pattern continues for the rest of the rows. How many rows of flowers did Maria plant?

Solve. Use any strategy.

5. Nadia’s garden has a length of 45 feet and a width of 32 feet. How much longer is the length than the width?

6. Fires can burn forests at a rate of up to 10 miles per hour. How many miles can a forest fire travel in 3 hours?
Capacity tells how much an object can hold. You measure capacity in cups, pints, quarts, and gallons.

| 1 cup (c) | 2 c = 1 pint (pt) | 2 pt = 1 quart (qt) or 4 c = 1 qt | 4 qt = 1 gallon (gal) |

Ring the letter of the estimate.

1. [Image of a juice box]
 - A. 1 c
 - B. 1 pt
 - C. 1 qt

2. [Image of a bucket]
 - A. 1 pt
 - B. 1 qt
 - C. 1 gal

3. [Image of a bottle of punch]
 - A. 1 c
 - B. 1 qt
 - C. 1 gal

4. [Image of a water bottle]
 - A. 10 c
 - B. 10 qt
 - C. 10 gal

5. [Image of water]
 - A. 1,000 c
 - B. 1,000 qt
 - C. 1,000 gal

6. [Image of a bottle of water]
 - A. 2 c
 - B. 2 qt
 - C. 2 gal
Choose the most appropriate unit to measure each capacity. Choose from cup, pint, quart, or gallon.

1.
2.
3.

Choose the best estimate.

4.
5.
6.

7.
8.
9.

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Reteach

Problem Solving Investigation

Sabrina has collected trading cards for 5 years. She now has 83 trading cards. In the second year, she collected 34 more cards than she did the first year. She only collected 12 cards her third and fourth years. In her fifth year she collected 9 cards. How many did she collect in the first year?

Understand

Be sure you understand the problem.

What do you know?

- You know Sabrina has 83 trading cards.
- You know she collected 34 more cards in the second year than in the first year.

What do you need to find?

- You need to find how many cards Sabrina collected in the first year.

Plan

Make a plan.

Choose a strategy.

Organize the data in to a table to help you solve the problem.

Solve

First, fill in what you know.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cards Collection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
</tr>
</tbody>
</table>

You know Sabrina now has 83 cards.
83 \(- 12 - 12 - 9 = 50 \) cards

You know Sabrina collected 34 more cards in the second year than in the first year. So, 50 \(- 34 = 16 \)

Divide \(16 \div 2 = 8 \)

Sabrina collected 8 cards in the first year.

8 \(+ 34 = 42 \)

Sabrina collected 42 cards in the second year.

So, she collected 8 cards in the first year.
Use any strategy to solve. Tell what strategy you used.

1. Spencer biked two miles to get to his Aunt’s house. Then he hiked twice as far to the park. How many miles was the total trip?

2. The department store is having a sale on sports equipment. All of the equipment is on sale at half the original price. Heather purchases 3 soccer balls, 4 water bottles, and 1 pair of running shoes. How much money did she spend?

<table>
<thead>
<tr>
<th>Item</th>
<th>Original Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseball</td>
<td>$6</td>
</tr>
<tr>
<td>Soccer ball</td>
<td>$14</td>
</tr>
<tr>
<td>Running shoes</td>
<td>$40</td>
</tr>
<tr>
<td>Water bottle</td>
<td>$4</td>
</tr>
<tr>
<td>Basketball hoop</td>
<td>$150</td>
</tr>
</tbody>
</table>

3. What two numbers are missing in the pattern below?

4, 8, 12, 16, 20, __, 28, __

4. James walked his dog 3 blocks to his friend’s house. On the way home, they walked twice as long. How many blocks was the trip altogether?

5. The class has 20 students. Each student has 2 erasers at their desk. How many erasers are there altogether?

6. Annie gave cards to her friends and family. 20 cards were for her classmates, 1 card was for her teacher and 4 cards were for other people. How many cards did she give out total?
Skills Practice

Problem-Solving Investigation

Use any strategy to solve. Tell what strategy you used.

1. Claire was having a party. She invited 4 friends from her ballet class, 3 friends from school, and 5 friends from other places. How many people were invited in all?

2. Reynaldo bought a bagel and orange juice. Luis bought a muffin and Cristina bought milk. How much did each person spend?

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagel</td>
<td>$1.25</td>
</tr>
<tr>
<td>Muffin</td>
<td>$0.75</td>
</tr>
<tr>
<td>Orange Juice</td>
<td>$1.00</td>
</tr>
<tr>
<td>Milk</td>
<td>$1.25</td>
</tr>
</tbody>
</table>

3. Matt and Rachel sold apple cider at the craft fair. They sold 80 cups in the first hour, 60 cups in the second hour, and 40 cups in the third hour. If the pattern continues, how many pints did they sell at the end of the fourth hour?

4. Megan swims 20 laps each day for a week. Natalie swims twice as much as Megan. At the end of 7 days, how many laps have Natalie and Megan swum in all?

5. There are 7 members of the Swanson family. Each member of the family has 4 towels. How many towels are there altogether?

6. What two numbers are missing in the pattern below?

6, 12, ____, 24, 30, 36, 42, ____
Reteach

Customary Units of Weight

Weight tells how heavy an object is. You can measure weight in ounces and pounds.

<table>
<thead>
<tr>
<th>1 ounce (oz)</th>
<th>5 oz</th>
<th>1 pound (lb)</th>
<th>10 lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use ounces to weigh light objects.</td>
<td>Use pounds to weigh heavier objects.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Choose the most appropriate unit to measure the weight of each object. Choose from ounce, or pound.

1. bowling ball
2. tissue
3. pen

Circle the letter of the better estimate.

4. A. 1 oz B. 1 lb
5. A. 6 oz B. 6 lb
6. A. 1 lb B. 10 lb

7. A. 3 oz B. 30 oz
8. A. 25 oz B. 25 lb
9. A. 4 oz B. 4 lb
Circle the letter of the better estimate.

<table>
<thead>
<tr>
<th>1. apples</th>
<th>2. basketball</th>
<th>3. boy</th>
<th>4. watermelon</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 1 oz</td>
<td>A. 20 oz</td>
<td>A. 60 oz</td>
<td>A. 5 oz</td>
</tr>
<tr>
<td>B. 1 lb</td>
<td>B. 20 lb</td>
<td>B. 60 lb</td>
<td>B. 5 lb</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. baseball</th>
<th>6. hat</th>
<th>7. sneakers</th>
<th>8. health bar</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. 5 oz</td>
<td>A. 3 oz</td>
<td>A. 1 oz</td>
<td>A. 1 oz</td>
</tr>
<tr>
<td>B. 5 lb</td>
<td>B. 3 lb</td>
<td>B. 1 lb</td>
<td>B. 1 lb</td>
</tr>
</tbody>
</table>

Order the objects from lightest to heaviest.

9. baseball, soccer ball, golf ball

10. basketball, basketball shirt, basketball player

Compare. Write >, < or =.

11. 18 oz [] 1 lb
12. 1 lb [] 16 oz
13. 12 oz [] 1 lb
Reteach
Convert Units of Time

There are 60 minutes in 1 hour.
1 hour = 60 minutes

There are 30 minutes in a half hour.
$\frac{1}{2}$ hour = 30 minutes

There are 15 minutes in a quarter hour.
$\frac{1}{4}$ hour = 15 minutes

Write the correct letter of the clockface.
1. half hour _________
2. hour _________
3. quarter hour _________

Write the letter of the matching time.
4. 15 minutes _______ A 1 hour
 B half hour
 C quarter hour

5. 60 minutes _______ A 1 hour
 B half hour
 C quarter hour

6. 30 minutes _______ A 1 hour
 B $\frac{1}{2}$ hour
 C $\frac{1}{4}$ hour

7. 2 hours _______ A 30 minutes
 B 60 minutes
 C 120 minutes

8. 180 minutes _______ A 1 hour
 B $1\frac{1}{2}$ hours
 C 3 hours

9. 90 minutes _______ A $1\frac{1}{2}$ hours
 B 1 hour
 C $1\frac{3}{4}$ hours
Skills Practice

Convert Units of Time

Convert.

1. 60 minutes = ______ hour
2. $\frac{1}{2}$ hour = ______ minutes
3. 3 hours = ______ minutes
4. 120 minutes = ______ hours
5. $\frac{1}{4}$ hour = ______ minutes
6. 2 half hours = ______ minutes
7. 30 minutes = ______ hour
8. 15 minutes = ______ hour
9. 3 half hours = ______ minutes
10. 3 quarter hours = ______ minutes
11. $1\frac{1}{2}$ hours = ______ minutes
12. 1 hour = ______ quarter hours
13. 2 hours = ______ minutes
14. 4 half hours = ______ hours
15. $\frac{3}{4}$ hour = ______ minutes
16. 30 minutes = ______ quarter hours
17. 2 hours = ______ minutes
18. 150 minutes = ______ half hours
19. 4 half hours = ______ hours
20. 300 minutes = ______ hours

Solve.

21. Jan exercises for $\frac{1}{2}$ hour. How many minutes is that?
 ______ minutes

22. The bus ride is 15 minutes long. How many hours is that?
 ______ hour

23. The movie is 2 hours long. How many minutes is that?
 ______ minutes

24. Eric trains for 60 minutes. How many quarter hours is that?
 ______ quarter hours

25. The halftime at the football game was $\frac{1}{4}$ hour long. How many minutes is that?
 ______ minutes

26. Martha spends 240 minutes visiting her grandmother. How many hours is that?
 ______ hours
Reteach

Metric Units of Length

In the metric system, you use centimeters (cm) to measure length.

This is 1 centimeter (cm). 1 meter (m) = 100 cm

A ones cube is
1 cm wide.

A door is about
1 m wide and 2 m high.

Choose the most appropriate unit to measure each length. Write millimeter, centimeter, meter, or kilometer.

1. a football _____________ 2. a baseball field _____________
3. a blade of grass ___________ 4. the height of a goalpost ___________
5. the length of a running shoe ___________ 6. the distance you can throw a ball ___________

Circle the best estimate.

7. a football player’s height
 A. 2 cm B. 2 mm C. 2 m

8. the length of an eyelash
 F. 9 cm G. 9 mm H. 9 m

9. the height of a tree
 A. 30 cm B. 30 mm C. 30 m
Estimate. Then measure to the nearest centimeter.

1. [Image of a ruler]

2. [Image of a circle]

3. [Image of a stopwatch]

Circle the best estimate.

4. the height of a third grader
 A. 120 cm B. 120 mm C. 120 m

5. the length of a race
 F. 100 cm G. 100 mm H. 100 m

6. the length of a sneaker
 A. 15 cm B. 15 mm C. 15 m
Reteach

Problem-Solving Strategy

Guess and Check

If you want to solve a problem, it is important to have a plan. You can use the *guess and check* strategy to solve problems.

Alicia is making bookmarks for the school fair. She needs 10 centimeters of ribbon for each bookmark. There is a meter of ribbon on each spool. How many bookmarks can she make out of one spool of ribbon? *(Hint: Remember there are 100 centimeters in a meter.)*

<table>
<thead>
<tr>
<th>Understand</th>
<th>What facts do you know?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Each bookmark uses 10 centimeters of ribbon.</td>
</tr>
<tr>
<td></td>
<td>• There is a meter of ribbon on each spool.</td>
</tr>
</tbody>
</table>

What do you need to find?

• How many bookmarks can be made from a spool of ribbon?

<table>
<thead>
<tr>
<th>Plan</th>
<th>You can use the guess and check strategy. Guess how many bookmarks you can make and check the answer with division.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve</td>
<td>Each bookmark is 10 centimeters. Each spool holds 1 meter of ribbon. Since 1 meter = 100 centimeters, we can guess that we can make 10 bookmarks. Check: 100 ÷ 10 = 10</td>
</tr>
</tbody>
</table>

So, Alicia can make 10 bookmarks.

<table>
<thead>
<tr>
<th>Check</th>
<th>Look back at the problem. One way to check the answer is work it backward. Check your division with multiplication.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 × 10 = 100</td>
</tr>
</tbody>
</table>

So, the answer is correct.
Solve. Use the **guess and check** strategy.

1. Ben is swimming in a 50-meter race on Saturday. He needs to measure the length of the swim, but he only has lengths of string 10 centimeters long. How many lengths of string will he need to equal 50 meters?

2. Irene’s crayons are each about 10 cm long. How many crayon lengths will it take to line them up end to end about 3 meters?

3. Mario is growing fresh carrots. Each week he measures his plants. If his plants grow 5 mm each week, how long will it take for his plants to reach 3 cm?

4. Marta has a stack of books 1 meter high. If Marta sorts her books into 10 equal stacks, how high will each stack be in cm?
Solve. Use the **guess and check** strategy.

1. Carmen needs 100 millimeters of yarn to make a bookmark. She has 1 meter of yarn. How many bookmarks can she make?

2. Hugo planted a garden of flowers. He planted 8 yellow flowers and twice as many purple flowers. He also planted some red flowers. Hugo has a total of 30 flowers. How many red flowers did he plant?

3. Each week, Pascul mows the front lawn twice and back lawn once. He walks a total of 824 meters while mowing in a week. He walks 391 meters each time he mows the front lawn. How many meters does he walk when he mows the back lawn?

4. Rogelio likes to run around the block. It takes him about 7 minutes. If Rogelio runs around the block 4 times a day, 2 days a week, how much time does he spend running around the block in a week?

5. Paloma has blocks that are 4 centimeters tall. If she stacks her blocks on top of each other, the stack is 32 centimeters tall. How many blocks does Paloma have?

6. Catalina is thinking of two numbers. Their difference is 3 and their sum is 33. What are the numbers?
Reteach

Metric Units of Capacity

The metric system uses milliliters and liters to measure capacity.

This dropper holds about 1 mL. A drinking glass holds about 240 mL. A bottle of water holds 1,000 mL, or 1 L.

Which unit would you use to measure the capacity of each? Write \(\text{mL} \) for milliliters and \(\text{L} \) for liters.

1.
2.
3.

Circle the best estimate to complete each sentence.

4. A juice box holds about ______ mL.
 A. 8 B. 18 C. 180

5. A teaspoon holds ______ mL.
 F. 10 G. 100 H. 1,000

6. A large pot holds about ______ L.
 A. 1 B. 6 C. 60
Circle the better estimate.

1.
A. 1 mL
B. 1 L

2.
F. 1 mL
G. 1 L

3.
A. 360 mL
B. 360 L

4.
F. 150 mL
G. 150 L

5.
A. 50 mL
B. 50 L

6.
F. 1 mL
G. 1 L

Choose the most appropriate unit to measure each capacity. Write milliliter or liter.

7.
8.
9.

Choose a Strategy

Coach Betty wants 11 liters of water in a cooler. She has a 5-liter bottle and an 8-liter bottle. How can she use them to measure exactly 11 liters?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Be sure you understand the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand</td>
<td>Read carefully</td>
</tr>
</tbody>
</table>

What do you know?
- Coach Betty wants _____ liters of water in a cooler.
- Coach Betty has bottles that hold _____ liters and _____ liters.

What do you need to know?
- You need to find how to use the bottles to measure __________.

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Make a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Choose a strategy.</td>
</tr>
<tr>
<td></td>
<td>Use draw a picture to solve the problem.</td>
</tr>
<tr>
<td></td>
<td>You can use the difference of the amount of water in the bottles to measure exactly 11 liters.</td>
</tr>
</tbody>
</table>
Problem-Solving Investigation (continued)

Step 3

Solve

Carry out your plan.

Follow the steps.

- Fill the 8-L bottle.
- Fill the 5-L bottle from the 8-L bottle.
- Pour what is left in the 8-L bottle into the cooler.
- Refill the 8-L bottle.
- Pour the water from the 8-L bottle into the cooler.
- Add. \(8 + 3 = \) [empty space]. There are ____ liters in the water cooler.

Step 4

Look Back

Is the solution reasonable?

Reread the problem.

How can you check your answers?

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Use any strategy to solve. Tell what strategy you used.

1. Ed has a 6-oz cup and an 8-oz cup. How can he use the cups to measure 10 ounces of water?

2. Cathy, Ted, and Ella eat lunch. One has a ham sandwich, one has a tuna sandwich, and one has a cheese sandwich. Ted and Cathy do not eat ham. Cathy does not eat fish. What does Ella eat?

Skills Practice

Problem-Solving Investigation

Use any strategy shown below. Tell what strategy you used.

• Look for a pattern
• Choose an operation
• Make a table

• Work backward
• Guess and check

1. Jack got home from school at 4:30 P.M. Before getting home, he practiced baseball for 30 minutes and played with his friends for 45 minutes. What time did he leave school?

2. Coach Mary has a 5-gallon bottle and a 3-gallon bottle. How can she use the bottles to get exactly 14 gallons of water in a cooler?

3. Dan, Michael, and Jerry play different sports. One plays tennis, another plays baseball, and the third is on the swimming team. Michael and Jerry play sports that use balls. Michael does not play baseball. Who plays baseball?

4. Ellen read 5 pages of a book on the first day, 10 pages the second day, and 15 pages the third day. If the pattern continues, how many pages will she read on the fifth day?

5. A small van has 4 rows of seats. Each row can seat 3 people. How many people in all can 2 vans hold?

6. Leah is 5 feet tall. Her brother Jamie is 50 inches tall. How much taller is Leah than Jamie?
Metric Units of Mass

Mass is the amount of matter in an object. In the metric system, units of mass are the gram and the kilogram.

1,000 grams (g) = 1 kilogram (kg)

Use grams to find the mass of small things.

1 g 145 g 220 g

Use kilograms to find the mass of larger things.

1 kg 5 kg 2 kg

Choose the most appropriate unit to measure each mass. Write gram or kilogram.

1. a third grader
2. a juice box
3. a golf ball
4. a golf club
5. a whistle
6. a bag of apples

Draw a line to match each object and its mass.

7. a football helmet
8. a remote control
9. a car
10. a computer disk
11. a bag of groceries

A. 1 kg
B. 10 kg
C. 1,200 kg
D. 22 g
E. 500 g
Circle the better estimate.

1. ()
 A. 1 g
 B. 1 kg

2. ()
 A. 600 g
 B. 600 kg

3. ()
 A. 8 g
 B. 8 kg

4. ()
 F. 2 g
 G. 2 kg

5. ()
 A. 22 g
 B. 22 kg

6. ()
 F. 20 g
 G. 20 kg

Choose the most appropriate unit to measure each mass. Write gram or kilogram.

7. ()

8. ()

9. ()
Convert Metric Units

The metric system is based on tens. So, you can use patterns to change from one unit to another.

To change from meters to centimeters, count by 100s.
To change from liters to milliliters, count by 1,000s.
To change from kilograms to grams, count by 1,000s.

Circle the amount that makes each sentence true.

1. 3 m = ______ A. 3 cm B. 300 cm C. 3,000 cm
2. 500 cm = ______ F. 5 m G. 500 m H. 5,000 m
3. 6,000 g = ______ A. 6 kg B. 60 kg C. 600 kg
4. 4 L = ______ F. 400 mL G. 4,000 mL H. 40,000 mL
5. 5,000 mL = ______ A. 5 L B. 500 L C. 5,000 L

Convert each unit to a smaller unit or larger unit.

6. 8 m = ______ cm 7. 4 kg = ______ g 8. 7 L = ______ mL
9. 400 cm = ______ m 10. 9,000 g = ______ kg 11. 6,000 mL = ______ L
12. 3 kg = ______ g 13. 500 cm = ______ m 14. 5 L = ______ mL
15. 9 m = ______ cm 16. 4,000 mL = ______ L 17. 1,000 g = ______ kg
Skills Practice

Metric Unit Conversions

Complete each table.

1. | Centimeters | 200 | 600 | 800 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meters</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

2. | Milliliters | 1,000 | 2,000 | 3,000 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Liters</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Convert each unit to a smaller unit or larger unit.

3. 100 cm = _____ m
4. 2,000 mL = _____ L
5. 3,000 g = _____ kg
6. 500 cm = _____ m
7. 6,000 g = _____ kg
8. 1,000 mL = _____ L
9. 3 L = _____ mL
10. 6 m = _____ cm
11. 2 kg = _____ g
12. _____ g = 5 kg
13. _____ cm = 9 m
14. _____ mL = 7 L

Solve.

15. A container holds 5 liters of water. How many milliliters of water does the container hold?

16. A table is 2 meters long. How many centimeters long is the table?

17. A banana has a mass of 125 grams. Use repeated addition to find the mass of two bananas?

18. A spider monkey has a mass of 6 kg. How many grams is this?
A polygon is a closed figure with straight sides.

These are polygons.

These are not polygons.

Circle the polygons below.

1.

2.

3.

Classify each polygon.

4.

5.

6.
Classify each polygon.

1. __________ 2. __________

3. __________ 4. __________

5. It has 6 sides.
6. It has 4 sides. All sides may not be equal in length.

7. It has 3 sides.
8. It has 8 sides.

9. It has 4 sides.
10. It has 5 sides.

Solve.

11. The library at Ladew Mansion in Maryland has 8 sides. What is the shape of the library?

12. A kitchen tile has 4 sides of equal length. What is the shape of the tile?
The perimeter is the distance around the outside of an object or shape. To find perimeter, add the lengths of the sides.

To find the perimeter of this triangle, add the lengths of the 3 sides.

5 m
5 m
3 m

5 + 5 + 3 = 13
The perimeter is 13 m.

To find the perimeter of this rectangle, add the lengths of the 4 sides.

10 yd
4 yd
10 yd
4 yd

10 + 4 + 10 + 4 = 28
The perimeter is 28 yd.

Complete the sentences.

1. The quadrilateral has ______ sides.
2. To find the perimeter of the quadrilateral, I must ______ the lengths of the sides.
3. The lengths of its sides are ______, ______, ______, and ______.
4. Find the perimeter. 2 cm + 2 cm + 2 cm + 5 cm = ___ cm

Find the perimeter of each figure.

5. 3 ft

6. 3 in.

7. 2 cm
Skills Practice
Perimeter

Find the perimeter of each figure. Use a centimeter ruler.

1.

2.

3.

4.

5.

6.

ALGEBRA Find the length of the missing side.

7.

 \[P = 3 + 6 + 3 + \square = 18 \text{ ft} \]

8.

 \[P = 30 + \square + 50 = 120 \text{ in.} \]
Reteach

Area

The number of square units needed to cover a plane figure without overlapping is called area. You can use grid paper to help you find the area of a figure.

Count the units.
The area of this rectangle is 10 square units.

Count the units.
The area of this figure is 8 square units.

Find the area of each figure.

1.

The rectangle has _____ square units. It has an area of _____ square units.

2.

The shaded figure has _____ square units. It has an area of _____ square units.

Find the area of each figure.

3.

4.

5.

_____ square units

_____ square units

_____ square units
Area

Find the area of each figure.

1. ![Figure 1](image1.png)
 - Area: ____________
2. ![Figure 2](image2.png)
 - Area: ____________
3. ![Figure 3](image3.png)
 - Area: ____________
4. ![Figure 4](image4.png)
 - Area: ____________
5. ![Figure 5](image5.png)
 - Area: ____________
6. ![Figure 6](image6.png)
 - Area: ____________

Draw a figure having the given area. Use the grid paper below.

7. 12 square units
 - ![Grid 7](image7.png)

8. 18 square units
 - ![Grid 8](image8.png)

9. 25 square units
 - ![Grid 9](image9.png)

10. 30 square units
 - ![Grid 10](image10.png)
Solve a Simpler Problem

A family of 2 adults and 3 children each order a sandwich and a drink in the museum cafeteria. Sandwiches cost $4 and drinks are $1. How much does lunch cost in all?

Step 1
Understand

Be sure you understand the problem.
Read carefully.

What do you know?

- There are _____ people in the family.
- They buy _____ sandwiches for _____ each and _____ drinks for _____ each.

What do you need to know?

- You need to find how much

Step 2
Plan

- Solve a Simpler Problem

Make a plan.
Choose a strategy.

Break the problem down into smaller parts. First, find the total number of people. Next, find the total cost of the sandwiches. Then, find the total cost of the drinks. Finally, add the total cost of the sandwiches to the total cost of the drinks.

Step 3
Solve

Carry out your plan.
Solve this simpler problem.

Total number of people

2 adults + 3 children = _____ total number of people
Problem-Solving Strategy (continued)

| Total cost of sandwiches:
5 people $4 per sandwich = ____ total cost of sandwiches.
| Total cost of drinks:
5 people $1 per drink = ____ total cost of drinks
| ____ + ____ = ____ total cost of sandwiches + total cost of drinks = total cost
| So, the lunch cost ____ in all.

Step 4 Check

| Is the solution reasonable?
Reread the problem.
| Does your answer make sense? Yes No
| Did you answer the question? Yes No
| What other strategies could you use to solve the problem?

Solve. Use the solve a simpler problem strategy.

1. The Wilsons buy 2 adult’s tickets for $5 each and 3 children’s tickets for $2 each. How much money do they spend in all?

2. Virginia buys 3 model airplanes for $6 each, 2 tubes of paint for $3 each, and 2 tubes of glue for $2 each. How much money does she spend in all?
Skills Practice

Problem-Solving Strategy

Solve. Use the solve a simpler problem strategy.

<table>
<thead>
<tr>
<th>1. Tickets to the Science Center cost $6 for adults and $3 for children. How much does a family of 2 adults and 4 children pay for tickets?</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. The Yuen family stops in the gift shop. Science Center pens cost $3. Science Center buttons cost $1. How much does it cost to buy 2 pens and 3 buttons?</td>
</tr>
<tr>
<td>3. Workers at the Science Center rope off a rectangular space. The space has 2 sides of 5 meters and 2 sides of 8 meters. How much rope do they need?</td>
</tr>
<tr>
<td>4. Lana’s home is 1 mile away from the bus stop. The ride from the bus stop to the Science Center is 6 miles. Lana walks to the bus stop and takes the bus to the Science Center. She returns home the same way. How many miles does she travel in all?</td>
</tr>
<tr>
<td>5. Nell, Barry, Chet, and Jill are in line for a movie on Alexander Graham Bell. The first person in line is a boy. Barry is ahead of Nell, but not ahead of Jill. List the names in order from first to last in line.</td>
</tr>
<tr>
<td>6. Write a problem that you could use the solve a simpler problem strategy to solve. Share it with others.</td>
</tr>
</tbody>
</table>

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
10–5

Reteach

Triangles and Angles

Triangles can be classified by the length of their sides or the size of their angles.

In an **equilateral triangle**, 3 sides are the same length and the angles are the same.

In an **isosceles triangle**, 2 sides are the same length.

In a **scalene triangle**, no sides are the same length.

Identify each triangle. Write *equilateral*, *isosceles*, or *scalene*.

1. None of the sides of the triangle are the same length. It is an **equilateral** triangle.

2. All of the sides of the triangle are equal. It is an **isosceles** triangle.

3. All of the angles of this triangle are equal. It is an **equilateral** triangle.

4. Two of the sides of the triangle are the same length. It is an **isosceles** triangle.
Skills Practice

Triangles

Identify each triangle. Write *equilateral*, *isosceles*, or *scalene*.

1.

2.

3.

4.

5.

6.

Identify each triangle. Tell whether each angle shown is a *right angle*, *less than a right angle*, or *greater than a right angle*.

7.

8.

9.

10.

11.

12.

Solve.

13. Classify the triangle in two different ways.

14. Classify the triangle in this flag.
A quadrilateral can be classified by its sides and angles.

A square has 4 right angles and 4 equal sides.

A rectangle has 4 right angles. Its opposite sides are equal in length.

In a parallelogram, both pairs of opposite sides are parallel.

Identify each quadrilateral.

1. It has 2 pairs of parallel sides. It is a ____________.

2. It is a rectangle with sides of equal length. It is a ____________.

3. It has 4 right angles and 4 sides of equal length. It is a ____________.

4. Both pairs of its opposite sides are parallel. It is a ____________.

5. It has 4 right angles, and its opposite sides are equal in length. It is a ____________.
Identify each quadrilateral.

1.

2.

3.

4.

5.

6.

7. It has 4 right angles and 4 sides of equal length.

8. Opposite sides have the same length with 2 angles less than right angles.

9. It has 4 sides, opposite sides are parallel, and there are no right angles.

10. It has 4 right angles. Its opposite sides are equal. All sides are not equal in length.

Write the missing numbers in the table.

<table>
<thead>
<tr>
<th>Number of quadrilaterals</th>
<th>2</th>
<th>4</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of sides</td>
<td>8</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Solve.

12. Which quadrilateral do most DVD cases look like?

13. Which quadrilateral does a computer screen look like?
Choose the Best Strategy

Claire made a quilt. The quilt has a length of 7 feet and a width of 5 feet. Each patch is a square with an area of 1 square foot. How many patches are in the quilt?

<table>
<thead>
<tr>
<th>Understand</th>
<th>You know the length of the quilt is 7 feet and the width of the quilt is 5 feet. You know the area of each patch is 1 square foot. You need to find how many patches are in the quilt.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>You can draw a picture to help solve the problem.</td>
</tr>
<tr>
<td>Solve</td>
<td>Draw a picture of the quilt. The width should be 5 units and the length should be 7 units. Each unit equals one square foot. Each patch has an area of 1 square foot. So, each square represents a patch. Count the squares in your drawing. Claire’s quilt has 35 patches.</td>
</tr>
</tbody>
</table>
| Check | Look back at the problem. You can find the area of the quilt by repeatedly adding the width seven times.

\[5 + 5 + 5 + 5 + 5 + 5 + 5 = 35 \text{ square feet} \]

So, the answer is correct. There are 35 patches in Claire’s quilt.
10–7

Reteach

Problem-Solving Investigation (Continued)

Use any strategy shown below to solve.

• Choose an operation
• Guess and check
• Make a table
• Solve a simpler problem

1. Maria’s class had a bake sale. They sold cupcakes and cups of milk. For every dozen cupcakes they sold, they poured a half a gallon of milk. If the class sold 24 dozen cupcakes, how many gallons of milk did they pour?

2. Pablo went golfing. On the first 9 holes, he took four strokes each. On the second 9, he only took 3 strokes each. What was Pablo’s final score for 18 holes?

3. Juanita collects marbles. For every 4 small marbles Juanita has, she has one large marble. If Juanita has 36 small marbles, how many large marbles does she have?

4. Toby swims laps every day. Shawna swims twice as many laps each day as Toby. If Shawna swims 14 laps a day, how many does Toby swim?
10–7

Skills Practice
Problem-Solving Investigation

Use any strategy shown below to solve.

• Choose an operation
• Make a table
• Guess and check
• Solve a simpler problem

1. Lori went to the store and bought 3 cans of soup, a dozen eggs, a 6 pack of water, a loaf of bread, and 2 cans of tuna fish. The express line is for 10 items or fewer. Can Lori go through the express line?

2. Pam has two pages of math homework, one page of English, and still needs to study for a spelling test for 15 minutes. If she begins her work at 7:30 and spends ten minutes on each page of homework, will she be able to be in bed by 8:30?

3. Marta was designing her new garden. For every 2 pink flowering plants, she wanted to plant 3 purple flowering plants. If Marta planted 18 pink flowering plants, how many purple plants would she need?

4. Jorge is hanging some new wallpaper. His walls are 10 feet by 8 feet, and he has 4 walls to cover. If he buys 500 square feet of wallpaper, will he have enough to paper the entire room?

5. Susan and Vanessa are mother’s helpers. They earn $3 an hour and work 5 hours a week. How much do Vanessa and Susan make together each week?

6. Mercedes rides her bike every day. Beatriz rides her bike twice as much as Mercedes. Emilio bikes 5 miles per day. If Mercedes rides her bike 2 miles a day, how many miles does Beatriz bike?
The objects you see around you are solid figures. A solid, or 3-dimensional figure, is a figure that has length, width, and height.

- cube
- pyramid
- rectangular prism
- cylinder
- sphere
- cone

Identify each solid figure.

1. [Diagram of pyramid]
2. [Diagram of sphere]
3. [Diagram of cube]
4. [Diagram of pyramid]
Identify each solid figure.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. Identify the figures that were used to build this house.

11. Name 3 things in your classroom that are shaped like a rectangular prism.
Think about the solid figures you learned about in lesson 8.

When we look around, we can find many solid figures in just one object. We call these **complex solid figures**. Think about a computer keyboard. It contains two solid figures.

Can you find the rectangular prism in the keyboard? It’s the base. Can you find the cubes on the keyboard? They are the keys. Sometimes we may need to use our imagination a bit. Sometimes we need to make the solid figures taller, or sometimes we may need to make the figures shorter and wider. If you look around, you can find lots of complex solids.

Identify the figures that make each complex solid.

1.
2.
3. crayon
Skills Practice
Complex Solid Figures

Identify the figures that make each complex solid.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10. Gabrielle was told she needed to construct a sign using two cylinders, two cones, and a rectangular prism. What do you think her sign looked like?

11. Alberto was designing some new playground equipment. He used cones, cylinders, and spheres. He did not use any rectangular prisms or cubes. What do you think his equipment looked like?
A cubic unit is a unit of volume.

Volume is the number of cubic units a solid figure holds.

You can use cubes to help you find volume. Count the cubes.

This figure has a volume of 8 cubic units. This figure has a volume of 10 cubic units.

Use the figure at the right to answer 1–5.

1. The top layer has _____ cubic units.
2. The middle layer has _____ cubic units.
3. The bottom layer has _____ cubic units.
4. How many cubes are there in all? _____
5. The volume is _____ cubic units.

Find the volume of each solid figure.

6.

7.

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Find the volume of each solid figure.

1.

2.

3.

4.

5.

6.

7.

8.

Skills Practice
Measurement: Volume

Grade 3
Mark takes a survey of some third-grade students to find out which flavor of juice they like best. He shows the results in a chart. Then Mark uses the chart to make a bar graph.

A bar graph is a graph that shows data using bars. The scale along one side of the bar graph is a set of equally spaced marks to tell how many.

The first bar in the graph tells you that 8 students like apple juice.

<table>
<thead>
<tr>
<th>Favorite Fruit Juice</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apple</td>
<td>8</td>
</tr>
<tr>
<td>Grape</td>
<td>4</td>
</tr>
<tr>
<td>Orange</td>
<td>10</td>
</tr>
<tr>
<td>Pineapple</td>
<td>2</td>
</tr>
</tbody>
</table>

Use the data in the bar graph to answer the questions.

1. How many students like grape juice?

2. Which juice flavor is the students’ least favorite?

3. How many more students like orange juice than pineapple juice?

4. Which two juice flavors do the students like the best?

5. Which juice flavor did the students like the most? How can you tell?

6. How many students were in this survey? How do you know?
Yoshi finds the following data about the life span of some animals. First he records the data in a chart. Then he starts to make a bar graph.

<table>
<thead>
<tr>
<th>Type of Animal</th>
<th>Average Life Span (Years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black bear</td>
<td>18</td>
</tr>
<tr>
<td>Domestic cat</td>
<td>12</td>
</tr>
<tr>
<td>Chipmunk</td>
<td>6</td>
</tr>
<tr>
<td>Domestic dog</td>
<td>12</td>
</tr>
<tr>
<td>Cow</td>
<td>15</td>
</tr>
</tbody>
</table>

Use the data in the chart to finish the bar graph. Then answer each exercise.

1. Why does the graph show every second number instead of all the numbers from 0 through 20 in the scale?

 (No specific answer is provided in the text.)

2. Which animal has the longest average life span?

 (Black bear)

3. Which animals have the same average life span?

 (Domestic cat and Domestic dog)

4. How many more years is a cow more likely to live than a cat?

 (3 years)

5. Which animal has the shortest life span?

 (Chipmunk)
Reteach

Line Plots

Like a vertical bar graph, a line plot shows information vertically. The base of the line plot is just that, a line, where we can place numbers. Unlike a bar graph, a line plot doesn’t have a vertical scale. Above each number or word at the base, we plot an X to represent how often a number is represented.

Let’s make a line plot together. We’ll plot the number of chores Paula did last week. On Sunday, Thursday, and Saturday, she did 4 chores a day. On Monday through Wednesday, she did 2 chores a day. Friday, she did none. Use the space below to make your line plot.

1. Make a line along the bottom of the page, but leave room for numbers below the line.

2. Write the numbers 0–5 in order under the line. Space the numbers as evenly as you can.

3. For each day Paula completed the number of chores shown on the line plot, put one X above that number.

4. Take a look at your line plot. You may not have an X above each number. Should you?
Skills Practice

Line Plots

Display each set of data in a line plot.

1. Armando was curious to know how much his classmates read at home each week, so he conducted a survey of the number of books each classmate read in a week.

<table>
<thead>
<tr>
<th>Name</th>
<th>Books Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jose</td>
<td>3</td>
</tr>
<tr>
<td>Dani</td>
<td>6</td>
</tr>
<tr>
<td>Juan</td>
<td>2</td>
</tr>
<tr>
<td>Carla</td>
<td>8</td>
</tr>
<tr>
<td>Ana</td>
<td>7</td>
</tr>
<tr>
<td>Fina</td>
<td>6</td>
</tr>
<tr>
<td>Luisa</td>
<td>3</td>
</tr>
<tr>
<td>Rey</td>
<td>9</td>
</tr>
<tr>
<td>Carmen</td>
<td>4</td>
</tr>
<tr>
<td>Angel</td>
<td>4</td>
</tr>
<tr>
<td>Emilio</td>
<td>2</td>
</tr>
<tr>
<td>Hugo</td>
<td>2</td>
</tr>
</tbody>
</table>

2. Colin had a good tomato crop this year. He kept track of how many tomatoes he picked each day for a week. Create a line plot to show how many days 5, 6, 7, 8, 9, or 10 tomatoes were picked.

<table>
<thead>
<tr>
<th>Day</th>
<th>Tomatoes Picked</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>5</td>
</tr>
<tr>
<td>Tuesday</td>
<td>7</td>
</tr>
<tr>
<td>Wednesday</td>
<td>10</td>
</tr>
<tr>
<td>Thursday</td>
<td>8</td>
</tr>
<tr>
<td>Friday</td>
<td>7</td>
</tr>
<tr>
<td>Saturday</td>
<td>5</td>
</tr>
<tr>
<td>Sunday</td>
<td>7</td>
</tr>
</tbody>
</table>

3. Mario and Sonia went on a long drive with their parents last weekend and kept track of all the different out-of-state license plates they spotted. Create a line plot to show the number of times that 5, 6, 7, and 8 license plates of a state were spotted.

<table>
<thead>
<tr>
<th>State</th>
<th>Number Spotted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>5</td>
</tr>
<tr>
<td>Arizona</td>
<td>8</td>
</tr>
<tr>
<td>Nevada</td>
<td>6</td>
</tr>
<tr>
<td>Washington</td>
<td>5</td>
</tr>
<tr>
<td>Maryland</td>
<td>5</td>
</tr>
</tbody>
</table>
You have a choice of a main dish and a drink. How many different combinations are possible?

Step 1

Understand

Be sure you understand the problem. Read carefully.

What do you know?

- Main dishes are ____________________________
- Drinks are ____________________________

What do you need to find?

- You need to find how many ________________

Step 2

Plan

- Make a List

Make a plan.

Choose a strategy.

Making a list can help you solve the problem.
Reteach

Problem-Solving Strategy (continued)

Step 3 Solve

Carry out your plan.
List the possible choices.

1. eggs, _____
2. pancakes, _____
3. waffles, _____
4. _____, juice
5. _____, juice
6. _____, juice

There are _____ different combinations.

Step 4 Check

Is the solution reasonable?
Reread the problem.

How can you check to make sure your answer is correct?

Practice

Solve. Use the make a list strategy.

1. Karen packs jeans in blue, black, and white. She packs shirts in gray, green, and blue. How many different outfits can Karen wear?

2. The ski lodge offers packages for 3 days or 7 days. For each package, you can choose a deluxe room, a standard room, or a budget room. How many different packages are there?
Skills Practice
Problem-Solving Strategy

Solve. Use the make a list strategy.

1. Diane is buying a bag. She can choose a large, medium, or small bag. The bag comes in leather or canvas. The bag comes with or without a strap. How many different bag choices are there?

2. Sandy will have 1 muffin and 1 juice. She can have a blueberry, corn, or bran muffin. She can have apple, orange, or grape juice. How many different choices are there?

3. Mr. Bevin is flying to Tokyo. The airline offers flights at 8:00 A.M. and 6:00 P.M. On each flight, there are first class, business class, and coach tickets. How many different choices are there for Mr. Bevin?

4. Dan can buy a vest in blue, black, green, or white. He can choose a V-neck or a crew neck. He can also choose a vest with or without a pocket. How many different kinds of vests are there?

5. Manuel has turkey, bologna, and ham to make sandwiches on whole wheat or rye bread. How many different kinds of sandwiches can Manuel make using any number of meats and one type of bread?

6. Joe wants to make a picture. He can use red, blue, green, or yellow paint. He can make a large or a small picture. How many different choices does Joe have using 1 color and 1 size?

7. Write a problem that can be solved with the make a list strategy. Share with others.
Probability is the chance that an event will happen.

The spinner has 5 sections.

The spinner shows the letters A, B, and C.

If you spin the spinner:

- It is **certain** that you will land on an A, B, or C. These are the letters showing.
- It is **impossible** that you will land on the letter D. There is no letter D on the spinner.
- It is **likely** that you will land on the letter C. Most of the letters on the spinner are Cs (3 of the 5).
- It is **unlikely** that you will land on the letter A or B. Only 1 of the 5 letters is an A. Only 1 of the 5 letters is a B.

Describe the probability of landing on each number. Write certain, likely, unlikely, or impossible.

1. Land on a 4.
 Think: Four of the 7 numbers are 4s.
 The probability of landing on a 4 is ____________.

2. Land on a 7.
 Think: None of the numbers is a 7.
 The probability of landing on a 7 is ____________.

3. Land on a 3.
 Think: Only 1 of the 7 numbers is a 3.
 The probability of landing on a 3 is ____________.

4. Land on a number.
 Think: Every section of the spinner shows a number.
 The probability of landing on a number is ____________.
Skills Practice
Identify Probability

Describe the probability. Write certain, likely, unlikely, or impossible.

1. Land on a 4. 2. Land on a 1. 3. Land on a 5.

Draw a spinner to represent each statement.

10. Likely but not certain to land on a 5

11. Unlikely but not impossible to land on red
Choose the Best Strategy

Beatriz joined a new basketball team. The first game they played, they scored 15 points. The next game they scored 20, and the following game they scored 25. If this pattern continues, how many points will they have scored at the end of 10 games?

Understand
You know the scores of the first three games.
You need to find the total points scored after 10 games.

Plan
Use the make a table strategy. Make a table showing 10 games and scores. Find scores by adding 5 to each previous score.

Solve
Carry out your plan.

<table>
<thead>
<tr>
<th>Game</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Score</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
<td>40</td>
<td>45</td>
<td>50</td>
<td>55</td>
<td>60</td>
</tr>
</tbody>
</table>

To find the total, add the scores from each game.

15 + 20 ______ 35 + 25 ______ 60 + 30 ______
90 + 35 ______ 125 + 40 ______ 165 + 45 ______
210 + 50 ______ 260 + 55 ______ 315 + 60 ______

So, the total number of points scored by this new team is 375 points.

Check
Look back at the problem. Check your addition with subtraction. Ask yourself if the answer seems reasonable.
Use any strategy shown below to solve.

- Use the four-step plan
- Make a table
- Work backward
- Guess and check
- Work a simpler problem
- Make a list

Ana is working hard to improve her swimming. Each day she swims 12 meters farther than she did the day before. Ana swam 60 meters on Monday. How many meters will she be swimming on Saturday?

<table>
<thead>
<tr>
<th>Understand</th>
<th>What do you know?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Each day Anna swims ______________</td>
</tr>
<tr>
<td></td>
<td>She swam ______________</td>
</tr>
<tr>
<td>What do you need to find?</td>
<td>__________________</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Plan</th>
<th>Use the __________________</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Solve</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday</td>
<td>60</td>
</tr>
<tr>
<td>Tuesday</td>
<td>$60 + 12 = ____$</td>
</tr>
<tr>
<td>Wednesday</td>
<td>$____ + 12 = ____$</td>
</tr>
<tr>
<td>Thursday</td>
<td>$____ + 12 = ____$</td>
</tr>
<tr>
<td>Friday</td>
<td>$____ + 12 = ____$</td>
</tr>
<tr>
<td>Saturday</td>
<td>$____ + 12 = ____$</td>
</tr>
</tbody>
</table>

Anna can swim ______________ by Saturday.

<table>
<thead>
<tr>
<th>Check</th>
<th></th>
</tr>
</thead>
</table>

Grade 3
220
Chapter 11
Use any strategy shown below to solve. Tell what strategy you used.

- Make a table
- Work backward
- Make a model
- Guess and check
- Work a simpler problem
- Make a list

1. The sixth-grade class was having a car wash each weekend during the month of October. The first weekend, they only washed 50 cars. Each weekend they washed 15 more cars. By the end of four weeks, how many cars had they washed?

2. Pittsburgh and Miami played a fantastic season opener. They scored a total of 45 points, but Pittsburgh won by 11. How many points did each team score?

3. Patty is training to hold her breath. When she started, she could hold her breath for about 15 seconds. She worked to hold her breath just two seconds longer each day. After five days, how long could Patty hold her breath?

4. There were 15 sparrows in the backyard and twice as many wrens. How many birds were in the backyard?

5. Marcos has the same chores each week, but he’d like to add a little variety. Suppose Marcos has to empty the trash, water the plants, fill the bird feeder, and sort the recycling. How many different ways can Marcos complete his chores?
Reteach

Make Predictions

When you make a prediction, pretend you have a blindfold on and take a guess at the outcome. Look carefully at the information that’s been recorded and try to see a pattern.

Let’s look at the example below.

<table>
<thead>
<tr>
<th>Irene’s Number Cube Toss</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
</tr>
</tbody>
</table>

Look at the pattern of Irene’s results. If you had to guess at the outcome of her next toss, a good guess would be a 2 or a 12, because those numbers have come up so many times in the pattern.

Try one on your own.

<table>
<thead>
<tr>
<th>Coins</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nickels</td>
<td>5</td>
</tr>
<tr>
<td>Dimes</td>
<td>3</td>
</tr>
<tr>
<td>Pennies</td>
<td>10</td>
</tr>
</tbody>
</table>

Your family is doing a thorough spring cleaning and you get to keep any change you find in the house. Predict what coin you might find next. Support your answer based on the table.
Skills Practice
Make Predictions

For Exercises 1–2, use the bar graph. It shows the number of times a coin was picked from a bag.

1. What coin are you most likely to pick next? Explain your answer.

2. Do you think there could be more than three kinds of coins in the bag? Explain your answer.

For Exercises 3–5, use the tally chart. It shows the results of picking a marble from a bag 56 times and then replacing it each time.

3. What color is likely to be picked next?

4. What two colors are equally likely to be picked?

5. Is it reasonable to predict that more than twice as many marbles are blue than red? Support your answer.
A fraction can name part of a whole. To write a fraction, each part of the whole must be the same size.

1 part shaded
4 parts in all, $\frac{1}{4}$ is shaded.

2 parts shaded
3 parts in all, $\frac{2}{3}$ is shaded.

4 unequal parts
You cannot write a fraction.

3 unequal parts
You cannot write a fraction.

Write the fraction for the part that is shaded.

1. [Diagram of 4 parts with 1 shaded]
 - _____ parts shaded
 - _____ parts in all
 - fraction _____

2. [Diagram of 3 parts with 2 shaded]
 - _____ parts shaded
 - _____ parts in all
 - fraction _____

3. [Diagram of 4 parts]
 - _____ parts shaded
 - _____ parts in all
 - fraction _____

4. [Diagram of 5 parts shaded]
 - _____ parts shaded
 - _____ parts in all
 - _____ parts shaded
 - _____ parts shaded
 - fraction _____

5. [Diagram of 5 parts with 3 shaded]
 - _____ parts shaded
 - _____ parts in all
 - fraction _____

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Skills Practice

Parts of a Whole

Write a fraction for the part that is shaded.

1.

2.

3.

4.

5.

6.

Draw a picture for each fraction. Shade the fraction.

7. \(\frac{2}{5} \)

8. \(\frac{1}{2} \)

9. \(\frac{3}{4} \)

10. \(\frac{5}{8} \)

11. \(\frac{2}{3} \)

12. \(\frac{4}{5} \)
Choose the best strategy

Danny and Drew were playing cards. Danny had two cards in his hand that equalled 8 and the difference was 2. Drew held two cards that equalled six and the difference was 4. Do you know which cards they were holding?

Let’s start with Danny’s cards.

Understand: Danny had two cards. The sum of the cards was 8. The difference was 2. What were the cards?

Plan: Think about the different ways you can make the number 8. Think...0 + 8 = __ , 1 + 7 = __ .

Solve: To arrive at 8, we can add lots of numbers, but if the difference between the two addends is two, Danny must have a 3 and a 5 in his hand. 5 + 3 = 8, and 5 – 3 = 2.

Check: Look back at the problem. 5 + 3 = 8, and 5 – 3 = 2. The difference is 2. We are correct.

Using the same strategy, we can see that Drew is holding a 1 and a 5.
Reteach

Problem-Solving Investigation (continued)

Solve.

<table>
<thead>
<tr>
<th>Items</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apples</td>
<td>$1.25 per lb</td>
</tr>
<tr>
<td>Bananas</td>
<td>$0.75 per lb</td>
</tr>
<tr>
<td>Oranges</td>
<td>3 for $1</td>
</tr>
<tr>
<td>Pears</td>
<td>$1.49 per lb</td>
</tr>
</tbody>
</table>

1. Teresa went to the store to buy some fruit. She spent $5 and bought apples, bananas, and 3 oranges. She didn’t buy any pears. What did Teresa buy?

2. Dana bought some fruit, too. She spent less than $3 and didn’t buy any bananas or oranges. What did she buy?

3. Use the table above. Carmen and Bernice rented a boat from 9 A.M. to 2 P.M. How much did it cost?

4. Fernando’s lunch totaled $5.65. He gave the waitress a ten dollar bill. How much change did he receive?

5. Would you rather find six dimes, four nickels, and eight pennies in the couch or eight nickels, two quarters, and three pennies?

6. Dana loves to go to the community pool. Admission is $2 per day. She likes to buy a snack while she’s there. She usually buys a bag of chips for 65 cents, and a soda for 95 cents. If Dana goes to the pool five days a week, how much does she spend?
Skills Practice

Problem-Solving Investigation

For Exercises 1-3, use the table below to solve.

<table>
<thead>
<tr>
<th></th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
<th>Friday</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walk dog</td>
<td>Al</td>
<td>Juan</td>
<td>Carla</td>
<td>Al</td>
<td>Juan</td>
</tr>
<tr>
<td>Set table</td>
<td>Juan</td>
<td>Carla</td>
<td>Al</td>
<td>Juan</td>
<td>Carla</td>
</tr>
<tr>
<td>Feed fish</td>
<td>Carla</td>
<td>Al</td>
<td>Juan</td>
<td>Carla</td>
<td>Al</td>
</tr>
</tbody>
</table>

1. Who will walk the dog on Tuesday and Friday?

2. Who will feed the fish on Monday and Wednesday?

3. Janice, Pat, and Madison each have a pet. One has fish. One has a cat, and the other has a bird. Pat and Madison have pets that do not live underwater. Madison’s pet can fly. Who has the cat?

4. It took 55 minutes for the hairdresser to cut Laura’s hair. If Laura left the hairdresser’s shop at 2:30 P.M., what time did the hairdresser begin?

5. Flowers cost $12 for 12 or $0.75 each. How much money can you save by buying 12 flowers individually?

6. Carla’s mom drives her to school and back home every day. The trip is 8 miles roundtrip. How many miles do Carla and her mom travel in one week?
Reteach

Find Equivalent Fractions

Equivalent fractions are different fractions that name the same amount.

\[
\frac{3}{4} \quad \frac{6}{8} \quad \frac{9}{12}
\]

\[
\frac{3}{4}, \frac{6}{8}, \text{ and } \frac{9}{12} \text{ are equivalent fractions.}
\]

Complete each number sentence to find equivalent fractions.

1. \[
\frac{1}{2} = \frac{1}{4} \quad \frac{1}{2} = \frac{2}{4}
\]

2. \[
\frac{1}{3} = \frac{1}{6} \quad \frac{1}{3} = \frac{2}{6}
\]

3. \[
\frac{1}{5} = \frac{1}{10} \quad \frac{1}{5} = \frac{2}{10}
\]

4. \[
\frac{1}{4} = \frac{1}{8} \quad \frac{1}{4} = \frac{2}{8}
\]

5. \[
\frac{3}{4} = \frac{3}{8} \quad \frac{3}{4} = \frac{6}{8}
\]

6. \[
\frac{3}{6} = \frac{1}{2} \quad \frac{3}{6} = \frac{3}{12}
\]

7. \[
\frac{3}{12} = \frac{1}{4} \quad \frac{3}{12} = \frac{2}{4}
\]

8. \[
\frac{1}{2} = \frac{1}{12} \quad \frac{1}{2} = \frac{6}{12}
\]

9. \[
\frac{4}{5} = \frac{4}{10} \quad \frac{4}{5} = \frac{8}{10}
\]

10. \[
\frac{2}{8} = \frac{1}{4} \quad \frac{2}{8} = \frac{2}{4}
\]

11. \[
\frac{8}{12} = \frac{1}{3} \quad \frac{8}{12} = \frac{4}{3}
\]
Find Equivalent Fractions

Complete each number sentence to find equivalent fractions.

1. \[\frac{1}{2} = \frac{5}{8} \]
2. \[\frac{1}{3} = \frac{3}{9} \]
3. \[\frac{1}{5} = \frac{2}{10} \]

Write another fraction that names each fraction.

4. \[\frac{1}{3} \]
5. \[\frac{3}{8} \]
6. \[\frac{2}{5} \]
7. \[\frac{4}{8} \]
8. \[\frac{1}{6} \]
9. \[\frac{4}{12} \]
10. \[\frac{2}{10} \]
11. \[\frac{3}{5} \]
12. \[\frac{3}{6} \]
13. \[\frac{2}{8} \]
14. \[\frac{4}{5} \]
15. \[\frac{6}{8} \]
Reteach

Problem-Solving Strategy

Draw a Picture

An amusement park has 4 roller coasters. Each roller coaster has 6 cars. Each car has 2 wheels. How many wheels are there in all?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Make sure that you understand the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand</td>
<td>• What do you know?</td>
</tr>
<tr>
<td></td>
<td>An amusement park has _____ roller coasters.</td>
</tr>
<tr>
<td></td>
<td>Each roller coaster has _____ cars.</td>
</tr>
<tr>
<td></td>
<td>Each car has _____ wheels.</td>
</tr>
<tr>
<td></td>
<td>• What do you need to find?</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Figure out a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>You can draw a picture to show what you know and what you need to find out.</td>
</tr>
<tr>
<td></td>
<td>• Draw a Picture or Diagram</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Carry out your plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve</td>
<td>Draw 4 roller coasters.</td>
</tr>
<tr>
<td></td>
<td>Draw 6 cars on each roller coaster.</td>
</tr>
<tr>
<td></td>
<td>Draw 2 wheels on each car.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Count the number of wheels.</td>
</tr>
<tr>
<td></td>
<td>There are _____ wheels.</td>
</tr>
</tbody>
</table>

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Reteach

Problem-Solving Strategy (continued)

Draw a Picture

<table>
<thead>
<tr>
<th>Step 4 Check</th>
<th>Is the solution reasonable?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>How can you use your picture to check your answer?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Solve. Use the draw a picture strategy.

1. There are 3 rows of 5 mini pizzas on a tray. Each mini pizza has 2 pepper slices on it. How many pepper slices are there in all?

2. Reshma baked 3 batches of banana bread. Each batch had 4 loaves. Each loaf had 12 nuts in it. How many nuts did Reshma use in all?

3. The quesadilla was cut into six pieces. Christina ate one third, Luis ate one third, and Mario ate one piece. How many pieces were left?

4. The pencil cup needed to be cleaned out. There were 25 pencils in the cup. 12 were broken, 5 didn’t have any erasers, and the rest were able to be sharpened and used. How many pencils were put back in the cup?

3MR1.1, 3NS3.1
Skills Practice
Problem-Solving Strategy

Solve. Use the draw a picture strategy.

1. A minibus has 5 rows of seats. Each row has 2 seats. How many people can travel in 5 minibuses?

2. Alicia made 3 bead bracelets. She put 4 different types of beads on each bracelet. She used 2 beads of each type. How many beads did she use?

3. Eric works on his homework for 2 hours a day. He does his homework 4 days a week. How much time does he spend on his homework in 4 weeks?

4. A muffin pan holds 6 muffins. Leilani uses 2 pans for each batch of muffins. How many muffins does she make in 4 batches?

5. There are eight pieces of fruit in the bowl. There are 2 bananas, 2 apples, and the rest are kiwi. How many kiwi are in the bowl of fruit?

6. There are three students in line. Carrie is behind Ernesto and in front of Roger. In what order are the students standing in line?

Use any strategy to solve.

7. Darin got home at 8:00 P.M. He was traveling for 1 hour and 15 minutes. At what time did he start traveling?

8. Karen spent $325 for a plane ticket and $190 on a rental car. How much money did she spend altogether?
You can use fraction strips to compare fractions.

\[\frac{1}{8} \text{ is less than } \frac{3}{8} \]

\[\frac{1}{8} < \frac{3}{8} \]

\[\frac{5}{6} \text{ is greater than } \frac{1}{2} \]

\[\frac{5}{6} > \frac{1}{2} \]

You can use a number line to tell if a fraction is closer to 0 or 1.

\[\frac{1}{8} \text{ is closer to 0.} \]

\[\frac{3}{4} \text{ is closer to 1.} \]

Compare. Write >, <, or =.

1. \[\frac{1}{6} \bigcirc \frac{1}{6} \]

2. \[\frac{1}{2} \bigcirc \frac{1}{5} \]

3. \[\frac{4}{8} \bigcirc \frac{7}{8} \]

4. \[\frac{1}{4} \bigcirc \frac{1}{8} \]

5. \[\frac{3}{4} \bigcirc \frac{1}{2} \]

6. \[\frac{3}{8} \bigcirc \frac{1}{4} \]
Skills Practice
Compare Fractions

Compare. Write $>$, $<$, or $=$.

1. \(\frac{1}{6} \bigcirc \frac{3}{6}\)

2. \(\frac{4}{8} \bigcirc \frac{1}{2}\)

3. \(\frac{1}{5} \bigcirc \frac{3}{10}\)

4. \(\frac{3}{4} \bigcirc \frac{1}{2}\)

5. \(\frac{2}{4} \bigcirc \frac{3}{6}\)

6. \(\frac{7}{10} \bigcirc \frac{2}{5}\)

7. \(\frac{1}{4} \bigcirc \frac{3}{4}\)

8. \(\frac{2}{6} \bigcirc \frac{1}{6}\)

9. \(\frac{3}{5} \bigcirc \frac{6}{10}\)

10. \(\frac{3}{3} \bigcirc \frac{1}{6}\)

11. \(\frac{3}{8} \bigcirc \frac{1}{2}\)

12. \(\frac{5}{10} \bigcirc \frac{1}{2}\)

13. \(\frac{2}{3} \bigcirc \frac{3}{6}\)

14. \(\frac{3}{10} \bigcirc \frac{1}{5}\)

15. \(\frac{5}{10} \bigcirc \frac{7}{10}\)

16. \(\frac{2}{6} \bigcirc \frac{6}{12}\)

17. \(\frac{2}{8} \bigcirc \frac{1}{4}\)

18. \(\frac{2}{3} \bigcirc \frac{3}{4}\)

19. \(\frac{1}{5} \bigcirc \frac{1}{6}\)

20. \(\frac{5}{8} \bigcirc \frac{3}{8}\)

21. \(\frac{4}{5} \bigcirc \frac{1}{5}\)

22. \(\frac{6}{8} \bigcirc \frac{7}{8}\)
Reteach
Add Like Fractions

You can use fraction models to add fractions.

Find $\frac{3}{6} + \frac{2}{6}$.

\[
\begin{array}{c}
\frac{1}{6} \hspace{1cm} \frac{1}{6} \hspace{1cm} \frac{1}{6} \\
\frac{1}{6} \hspace{1cm} \frac{1}{6} \hspace{1cm} \frac{1}{6}
\end{array}
\]

\[
\frac{3}{6} + \frac{2}{6} = \frac{5}{6}
\]

Add.

1. \[
\begin{array}{c}
\frac{1}{4} \hspace{1cm} \frac{1}{4} \hspace{1cm} \frac{1}{4}
\end{array}
\]

\[
\frac{1}{4} + \frac{2}{4} = \frac{3}{4}
\]

2. \[
\begin{array}{c}
\frac{1}{8} \hspace{1cm} \frac{1}{8} \hspace{1cm} \frac{1}{8} \hspace{1cm} \frac{1}{8}
\end{array}
\]

\[
\frac{1}{8} + \frac{4}{8} = \frac{5}{8}
\]

3. \[
\begin{array}{c}
\frac{1}{6} \hspace{1cm} \frac{1}{6} \hspace{1cm} \frac{1}{6} \hspace{1cm} \frac{1}{6} \hspace{1cm} \frac{1}{6}
\end{array}
\]

\[
\frac{1}{6} + \frac{4}{6} = \frac{5}{6}
\]

4. \[
\begin{array}{c}
\frac{1}{12} \hspace{1cm} \frac{1}{12}
\end{array}
\]

\[
\frac{2}{12} + \frac{3}{12} = \frac{5}{12}
\]

5. \[
\begin{array}{c}
\frac{1}{3} \hspace{1cm} \frac{1}{3}
\end{array}
\]

\[
\frac{1}{3} + \frac{1}{3} = \frac{2}{3}
\]

6. \[
\begin{array}{c}
\frac{1}{10} \hspace{1cm} \frac{1}{10} \hspace{1cm} \frac{1}{10}
\end{array}
\]

\[
\frac{3}{10} + \frac{4}{10} = \frac{7}{10}
\]

Add. Use fraction strips if needed.

7. \[
\frac{1}{8} + \frac{6}{8} = \frac{7}{8}
\]

8. \[
\frac{1}{7} + \frac{4}{7} = \frac{5}{7}
\]

9. \[
\frac{5}{12} + \frac{4}{12} = \frac{9}{12} = \frac{3}{4}
\]

10. \[
\frac{1}{5} + \frac{2}{5} = \frac{3}{5}
\]

11. \[
\frac{1}{4} + \frac{3}{4} = \frac{4}{4} = 1
\]

12. \[
\frac{2}{9} + \frac{3}{9} = \frac{5}{9}
\]
Add Like Fractions

1. \(\frac{1}{4} + \frac{2}{4} = \) ____

2. \(\frac{2}{6} + \frac{3}{6} = \) ____

3. \(\frac{3}{8} + \frac{2}{8} = \) ____

4. \(\frac{1}{12} + \frac{4}{12} = \) ____

5. \(\frac{2}{10} + \frac{7}{10} = \) ____

6. \(\frac{3}{5} + \frac{1}{5} = \) ____

Add. Use fraction strips if needed.

7. \(\frac{2}{5} + \frac{2}{5} = \) ____

8. \(\frac{3}{12} + \frac{4}{12} = \) ____

9. \(\frac{1}{3} + \frac{1}{3} = \) ____

10. \(\frac{6}{8} + \frac{1}{8} = \) ____

11. \(\frac{1}{8} + \frac{2}{8} = \) ____

12. \(\frac{1}{5} + \frac{1}{5} = \) ____

13. \(\frac{1}{6} + \frac{4}{6} = \) ____

14. \(\frac{2}{9} + \frac{2}{9} = \) ____

15. \(\frac{2}{10} + \frac{5}{10} = \) ____

16. \(\frac{3}{6} + \frac{2}{6} = \) ____

17. \(\frac{2}{10} + \frac{7}{10} = \) ____

18. \(\frac{3}{5} + \frac{1}{5} = \) ____

19. \(\frac{1}{4} + \frac{1}{4} = \) ____

20. \(\frac{2}{5} + \frac{3}{5} = \) ____
Reteach

Subtract Like Fractions

You can use fraction models to subtract fractions.

Find \(\frac{7}{10} - \frac{6}{10} \).

\[
\begin{array}{cccccc}
\hline
& & & & & \\
\frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} & \frac{1}{10} \\
\hline
\end{array}
\]

\[
\frac{7}{10} - \frac{6}{10} = \frac{1}{10}
\]

Subtract.

1. \(\frac{1}{8} \) \(\frac{1}{8} \) \(\frac{1}{8} \) \(\frac{1}{8} \)

\[
\frac{6}{8} - \frac{3}{8} =
\]

2. \(\frac{1}{12} \) \(\frac{1}{12} \)

\[
\frac{10}{12} - \frac{3}{12} =
\]

3. \(\frac{1}{6} \) \(\frac{1}{6} \)

\[
\frac{5}{6} - \frac{4}{6} =
\]

4. \(\frac{1}{9} \) \(\frac{1}{9} \)

\[
\frac{8}{9} - \frac{6}{9} =
\]

5. \(\frac{1}{10} \) \(\frac{1}{10} \) \(\frac{1}{10} \) \(\frac{1}{10} \) \(\frac{1}{10} \)

\[
\frac{7}{10} - \frac{4}{10} =
\]

6. \(\frac{1}{12} \) \(\frac{1}{12} \)

\[
\frac{9}{12} - \frac{2}{12} =
\]

Subtract. Use fraction strips if needed.

7. \(\frac{5}{7} \) \(\frac{3}{7} \)

\[
\frac{5}{7} - \frac{3}{7} =
\]

8. \(\frac{8}{11} \) \(\frac{4}{11} \)

\[
\frac{8}{11} - \frac{4}{11} =
\]

9. \(\frac{3}{4} \) \(\frac{1}{4} \)

\[
\frac{3}{4} - \frac{1}{4} =
\]

10. \(\frac{4}{5} \) \(\frac{4}{5} \)

\[
\frac{4}{5} - \frac{4}{5} =
\]
Skills Practice

Subtract Like Fractions

Subtract.

1. \(\frac{3}{4} - \frac{2}{4} = \) ______

2. \(\frac{5}{12} - \frac{4}{12} = \) ______

3. \(\frac{7}{8} - \frac{2}{8} = \) ______

4. \(\frac{7}{9} - \frac{3}{9} = \) ______

5. \(\frac{7}{10} - \frac{4}{10} = \) ______

6. \(\frac{4}{5} - \frac{2}{5} = \) ______

Subtract. Use fraction strips if needed.

7. \(\frac{5}{7} - \frac{2}{7} = \) ______

8. \(\frac{6}{8} - \frac{1}{8} = \) ______

9. \(\frac{7}{12} - \frac{2}{12} = \) ______

10. \(\frac{9}{10} - \frac{8}{10} = \) ______

11. \(\frac{4}{5} - \frac{1}{5} = \) ______

12. \(\frac{10}{12} - \frac{3}{12} = \) ______

13. \(\frac{6}{8} - \frac{3}{8} = \) ______

14. \(\frac{2}{3} - \frac{1}{3} = \) ______

15. \(\frac{8}{9} - \frac{3}{9} = \) ______

16. \(\frac{6}{8} - \frac{5}{8} = \) ______

17. \(\frac{3}{7} - \frac{1}{7} = \) ______

18. \(\frac{9}{10} - \frac{2}{10} = \) ______

19. \(\frac{3}{12} - \frac{2}{12} = \) ______

20. \(\frac{5}{8} - \frac{2}{8} = \) ______

21. \(\frac{8}{10} - \frac{5}{10} = \) ______

22. \(\frac{4}{9} - \frac{2}{9} = \) ______
You can use a fraction or a decimal to name parts of a whole.

10¢ = \(\frac{1}{10} \) of a dollar
Read: one tenth
Fraction: \(\frac{1}{10} \)
Decimal: 0.1 or $0.10

5¢ = \(\frac{5}{100} \) of a dollar
Read: five hundredths
Fraction: \(\frac{5}{100} \)
Decimal: 0.05 or $0.05

Write a fraction and a decimal for the part that is shaded.

1. _____
2. _____
3. _____

Write each fraction as a decimal.

4. \(\frac{7}{10} \) _____
5. three tenths _____
6. \(\frac{9}{10} \) _____

Write each decimal as a fraction.

7. 0.5 _____
8. 0.4 _____
9. 0.1 _____
Skills Practice

Tenths

Write a decimal for each.

1.
2.
3.
4.

5. \(\frac{5}{10} = \)
6. \(\frac{1}{10} = \)
7. \(\frac{9}{10} = \)
8. \(\frac{4}{10} = \)

9. \(\frac{2}{10} = \)
10. \(\frac{6}{10} = \)
11. \(\frac{8}{10} = \)
12. \(\frac{7}{10} = \)

13. six tenths
14. eight tenths
15. three tenths
16. nine tenths
17. two tenths
18. one tenth
19. five tenths
20. seven tenths

Solve.

21. There are 10 children at the Sunnyside Preschool. Seven children are younger than 4 years old. Write a fraction and a decimal for the number of children who are younger than 4 years old.

22. There are 10 third grade students near the swings. Six of the students are girls. Write a fraction and a decimal for the number of girls.
Reteach

Hundredths

This model shows 5 tenths shaded.

\[
\frac{5}{10} = 0.5
\]

You can write \(\frac{5}{10} \) as a decimal, 0.5. Read: five tenths

This model shows 12 hundredths shaded.

\[
\frac{12}{100} \quad \text{Decimal: 0.12}
\]

Read: twelve hundredths

Write each as a decimal.

1. \[
\quad
\]

2. \[
\quad
\]

3. \[
\quad
\]

4. \[
\quad
\]

5. \(\frac{7}{10} = ____ \)

6. \(\frac{3}{10} = ____ \)

7. \(\frac{59}{100} = ____ \)

8. \(\frac{15}{100} = ____ \)

9. \(\frac{8}{100} = ____ \)

10. \(\frac{9}{10} = ____ \)

11. \(\frac{64}{100} = ____ \)

12. \(\frac{1}{100} = ____ \)

13. \(\frac{14}{100} = ____ \)
Write each as a decimal.

1. 6
2. 2
3. 3
4. 8
5. \(\frac{6}{10} = \) __ __
6. \(\frac{2}{10} = \) __ __
7. \(\frac{3}{10} = \) __ __
8. \(\frac{8}{10} = \) __ __
9. \(\frac{17}{100} = \) __ __
10. \(\frac{35}{100} = \) __ __
11. \(\frac{7}{100} = \) __ __
12. \(\frac{5}{100} = \) __ __
13. nine tenths ______
14. sixteen hundredths ______
15. three hundredths ______
16. nine hundredths ______
17. eight hundredths ______
18. forty-one hundredths ______

For Exercises 19 and 20, write a fraction and a decimal.

19. There are 100 people at the game. Forty-two people are sitting.
 What part of the group of people are not sitting? ______

20. Tim has seen 100 movies. 76 of the movies are comedies.
 What part of the movies are not comedies? ______
Bob, James, and Ruth are playing a decimal game. One person has 0.02 points. One person has 0.25 points. One person has 0.6 points. Bob does not have the least number of points. Ruth’s score is in the hundredths. James has a score equivalent to $\frac{6}{10}$. What are the scores of each player?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Be sure you understand the problem. Read carefully.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand</td>
<td>What do you know?</td>
</tr>
<tr>
<td></td>
<td>• The scores are 0.02, 0.25, and 0.6.</td>
</tr>
<tr>
<td></td>
<td>• Bob does not have the least number of points.</td>
</tr>
<tr>
<td></td>
<td>• Ruth’s score is in the hundredths.</td>
</tr>
<tr>
<td></td>
<td>• James has a score equivalent to $\frac{6}{10}$.</td>
</tr>
</tbody>
</table>

What do you need to know?

• You need to find ____________________________.

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Make a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Choose a strategy.</td>
</tr>
<tr>
<td></td>
<td>Use the act it out strategy to solve the problem.</td>
</tr>
<tr>
<td></td>
<td>Have three people represent Bob, Ruth, and James.</td>
</tr>
<tr>
<td></td>
<td>Write each score on a piece of paper. Give each person a number according to the facts.</td>
</tr>
</tbody>
</table>
Practice

1. Ed, Marsha, and Gene are playing a game with decimals. Each person has one of the following decimals: 0.5, 0.54, and 0.2. Ed’s number is not equivalent to \(\frac{5}{10} \) or \(\frac{2}{10} \). Marsha’s number is greater than Gene’s number. What are the numbers of each player?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Cathy has 100 marbles. \(\frac{28}{100} \) of them are blue. Thirty hundredths of her marbles are green. The rest are red. What decimal represents the number of marbles that are red?

<table>
<thead>
<tr>
<th>Name</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reteach

Problem-Solving Strategy (continued)

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Carry out your plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve</td>
<td>Give James 0.6 because it is the only number equivalent to (\frac{6}{10}). Since 0.02 is the least number, give Bob 0.25. That means that Ruth has 0.02, which makes sense because it is in the hundredths.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 4</th>
<th>Is the solution reasonable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Check</td>
<td>Reread the problem.</td>
</tr>
<tr>
<td></td>
<td>How can you check your answers?</td>
</tr>
</tbody>
</table>

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Skills Practice

Problem-Solving Strategy

Solve. Use the act it out strategy.

1. Tickets to the movies cost $8 for adults and $5 for children. How much does a family of 2 adults and 4 children pay for tickets?

2. The Sanchez family stops in the grocery store. Juice bottles cost $3. Paper towel rolls cost $2. How much does it cost to buy 2 juice bottles and 3 paper towel rolls?

3. There are workers at the Science Center. There are 58 women. What decimal represents the workers who are men?

4. Lana’s family travels 100 miles to her grandmother’s house. After 40 miles, they stop for lunch. What decimal represents the part of the trip that they have left?

5. Sue, George, Paul, and Tina are in line for a movie. The first person in line is a boy. George is ahead of Sue, but not ahead of Tina. List the names in order from first to last in line.

6. Write a problem that you could use the act it out strategy to solve. Share it with others.
Reteach

Decimals and Money

KEY

<table>
<thead>
<tr>
<th>Money</th>
<th>Words</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>one cent</td>
<td>one cent or one hundredth of a dollar</td>
<td>1¢ or $0.01</td>
</tr>
<tr>
<td>five cents</td>
<td>five cents or five hundredths of a dollar</td>
<td>5¢ or $0.05</td>
</tr>
<tr>
<td>ten cents</td>
<td>ten cents or ten hundredths of a dollar</td>
<td>10¢ or $0.10</td>
</tr>
<tr>
<td>twenty-five cents</td>
<td>twenty-five cents or twenty-five hundredths of a dollar</td>
<td>25¢ or $0.25</td>
</tr>
<tr>
<td>fifty cents</td>
<td>fifty cents or fifty hundredths of a dollar</td>
<td>50¢ or $0.50</td>
</tr>
<tr>
<td>one hundred cents</td>
<td>one hundred cents or one hundred hundredths of a dollar</td>
<td>100¢ or $1.00</td>
</tr>
</tbody>
</table>

Concept

<table>
<thead>
<tr>
<th>Fractions, Decimals, and Money</th>
</tr>
</thead>
<tbody>
<tr>
<td>one cent or one hundredth of a dollar</td>
</tr>
<tr>
<td>five cents or five hundredths of a dollar</td>
</tr>
<tr>
<td>ten cents or ten hundredths of a dollar</td>
</tr>
<tr>
<td>twenty-five cents or twenty-five hundredths of a dollar</td>
</tr>
<tr>
<td>fifty cents or fifty hundredths of a dollar</td>
</tr>
<tr>
<td>one hundred cents or one hundred hundredths of a dollar</td>
</tr>
</tbody>
</table>

Write a fraction for the part of a dollar the coin represents.

1. _____
2. _____
3. _____

4. Sadie went to the pet store to buy fish food. She spent 4 dimes and 10 pennies. What fraction of a dollar did Sadie spend?
Write the part of the dollar each amount represents.

1.

2.

3.

4.

Solve.

5. To buy bubbles, Taye needs 75 cents. He has 6 nickels, 2 dimes, and 1 quarter. Does he have enough?

6. Julie spent \(\frac{7}{10} \) of a dollar on a bag of trail mix. If she gave the clerk \(\frac{75}{100} \) of a dollar, how much change did she get back?

7. Brad has 3 dimes and 2 quarters. How much money does he have altogether?

8. Curtis gives \(\frac{1}{2} \) of all of the money he earns to his parents. If he earns $50, how much will he give his parents?
Choose a strategy

Antonio picked 24 apples to make applesauce. It will take 12 apples for each batch of sauce. How many batches of sauce can Antonio make?

Step 1
Understand

Be sure you understand the problem.
What do you know?

- Antonio picked _____ apples.
- It will take _____ apples to make a batch of applesauce.
- You need to find how many batches of _____ Antonio can make.

Step 2
Plan

Make a plan.
Choose a strategy.

You can draw a picture. Decide what facts you know. Plan what you will do and in what order. Use your plan to solve the problem. Then check your solution to make sure it makes sense.
Step 3
Solve

Carry out your plan.
You know that you need to find out how many batches of applesauce Antonio can make with 24 apples.

Draw 24 circles to represent the apples. Circle groups of 12. Write a division sentence.

\[24 \div 12 = \square \]

Step 4
Check

Is the solution reasonable?
Reread the problem.

How can you check your answer

__
__

Use any strategy shown below to solve.

- Guess and Check
- Draw a picture
- Work a simpler problem
- Act it out
- Make an organized list

1. Carolina has 25 peanuts and she wants to share them. If she and each of her friends gets the same amount of peanuts, how many will each one get?

2. Becky went to the park with 6 friends. Two of them left early and 1 got hurt. How many are left to play with Becky?
Skills Practice

Problem-Solving Investigation

Use any strategy to solve.

1. Dinah and Trey each have some money. The sum of their money is 78¢. The difference is 6¢. Dinah has more money than Trey. How much money do they each have?

2. Julie, Shawna, and Matt are in the lunch line. Julie is not first. Matt is behind Julie. What order are they standing in line? List their names from first to last.

3. The cashier gave Jaime $0.48 in change. Jaime bought shampoo and toothpaste. The shampoo cost $3.63. Jaime gave the cashier one $5-bill and two $1-bills. How much did the toothpaste cost?

4. Katie went to lunch at 11:30. Before lunch, she had Math class for one hour. She went to Music class for 45 minutes before Math class. What time did Katie start Music class?

5. Don can order a small, medium, or large juice. He can order orange juice or apple juice. How many possible drink combinations can he order?

6. Paula has \(\frac{1}{4} \) of a dollar. Rick has \(\frac{8}{10} \) of a dollar. Bonnie has 5 nickels. If they combine their money, do they have enough to buy a game that costs $1.50? Explain.
Reteach

Multiply Multiples of 10, 100, and 1,000

Find 5 \times 30.
Make 5 groups with 30 in each group.

\[
\begin{align*}
3 \text{ tens} &+ 3 \text{ tens} + 3 \text{ tens} + 3 \text{ tens} + 3 \text{ tens} = 15 \text{ tens} = 150 \\
\text{So, } 5 \times 30 & = 150.
\end{align*}
\]

Find 4 \times 3,000. Use basic facts. Look for a pattern.

\[
\begin{align*}
4 \times 3 & = 4 \times 3 \text{ ones} = 12 \text{ ones} = 12 \\
4 \times 30 & = 4 \times 3 \text{ tens} = 12 \text{ tens} = 120 \\
4 \times 300 & = 4 \times 3 \text{ hundreds} = 12 \text{ hundreds} = 1,200 \\
4 \times 3,000 & = 4 \times 3 \text{ thousands} = 12 \text{ thousands} = 12,000 \\
\text{So, } 4 \times 3,000 & = 12,000.
\end{align*}
\]

Multiply.

1. 3 \times 20 = \underline{____} \text{ tens} = \underline{____}
2. 5 \times 40 = \underline{____} \text{ tens} = \underline{____}

\[
\begin{align*}
\begin{array}{c}
\square \square \\
\square \square \\
\square \square \\
\end{array}
\end{align*}
\]

3. 7 \times 20 = \underline{____} \text{ tens} = \underline{____}
4. 4 \times 20 = \underline{____} \text{ tens} = \underline{____}

\[
\begin{align*}
\begin{array}{c}
\square \square \square \\
\square \square \square \\
\square \square \square \\
\end{array}
\end{align*}
\]

5. 2 \times 30 = \underline{____}
6. 3 \times 30 = \underline{____}

7. 7 \times 20 = \underline{____}
8. 5 \times 60 = \underline{____}
9. 4 \times 700 = \underline{____}

10. 5 \times 600 = \underline{____}
11. 2 \times 9,000 = \underline{____}
12. 6 \times 8,000 = \underline{____}

Copyright © Macmillan/McGraw-Hill, a division of The McGraw-Hill Companies, Inc.
Multiply. Use basic facts and patterns.

1. \[5 \times 2 = \]
2. \[3 \times 9 = \]

3. \[5 \times 2 = \]
 \[5 \times ____ = 100\]
 \[5 \times ____ = 1,000\]
 \[____ \times 2,000 = 10,000\]

Multiply. You may use models.

5. \[5 \times 30 = \]
6. \[5 \times 40 = \]
7. \[4 \times 7,000 = \]

8. \[3 \times 800 = \]
9. \[6 \times 20 = \]
10. \[3 \times 60 = \]

11. \[8 \times 40 = \]
12. \[9 \times 300 = \]
13. \[6 \times 30 = \]

14. \[3 \times 40 = \]
15. \[80 \times 5 = \]
16. \[600 \times 5 = \]

17. \[4,000 \times 6 = \]
18. \[700 \times 6 = \]
19. \[8 \times 7,000 = \]

Solve.

20. A library spends $1,000 each month for new books. How much does it spend in 6 months?

21. Tara puts some of her stickers in a book. She fills 2 pages. Each page has 40 stickers on it. How many stickers are on those pages?
Robin, Mark, and Monica each have one pet. The pets include a cat, a dog, and a bird. Robin’s pet has fur. Mark’s pet has two legs. Monica does not have a cat. What pet does each person have?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Be sure you understand the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand</td>
<td>Read carefully.</td>
</tr>
<tr>
<td>What do you know?</td>
<td></td>
</tr>
<tr>
<td>• Each person has a different pet.</td>
<td></td>
</tr>
<tr>
<td>• Robin’s pet has fur.</td>
<td></td>
</tr>
<tr>
<td>• Mark’s pet has two legs.</td>
<td></td>
</tr>
<tr>
<td>• Monica does not have a cat.</td>
<td></td>
</tr>
<tr>
<td>What do you need to know?</td>
<td></td>
</tr>
<tr>
<td>• You need to find</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Make a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Choose a strategy.</td>
</tr>
</tbody>
</table>

Make a table to organize the information. Then use logical reasoning to solve the problem.

<table>
<thead>
<tr>
<th>Step 3</th>
<th>Carry out your plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solve</td>
<td>Robin’s pet has fur. Write no next to Robin’s name under bird.</td>
</tr>
<tr>
<td></td>
<td>Mark’s pet has two legs. Write yes next to his name under bird. Write no next to his name under cat and dog.</td>
</tr>
</tbody>
</table>
Since Mark has the bird, write no next to Monica’s name under bird. Monica does not have a cat. Write no next to her name under cat. That means that Monica has a dog.

Since Monica has a dog, write no next to Robin’s name under dog. That means that Robin has a cat.

<table>
<thead>
<tr>
<th></th>
<th>Cat</th>
<th>Dog</th>
<th>Bird</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monica</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

So, Robin has a cat, Mark has a bird, and Monica has a dog.

Step 4 Check

Is the solution reasonable?

Reread the problem.

How can you check your answers?

Solve. Use logical reasoning.

1. Kelly, Sally, Jane, and Ralph are eating lunch. They each have a different lunch: pepperoni pizza, ham sandwich, grilled cheese sandwich, and hot dog. Kelly does not eat meat. Sally does not like pizza, Jane is not eating a sandwich, and Ralph is eating a hot dog. Which lunch does each person have?
Skills Practice

Problem-Solving Strategy

Solve. Use logical reasoning.

1. Doug, Rachel, Mike, and Holly are each wearing different colored shoes. Doug is not wearing black. Rachel is not wearing red or blue. Holly is not wearing blue. Mike is wearing brown shoes. What color of shoes is each person wearing? Complete the table.

<table>
<thead>
<tr>
<th></th>
<th>brown</th>
<th>black</th>
<th>red</th>
<th>blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Doug</td>
<td></td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rachel</td>
<td></td>
<td></td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Mike</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Holly</td>
<td>no</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. Sue, Kara, Jonny, and Pat each have a different chore. Sue does not do dishes, Kara does not fold laundry or make beds, Jonny does not make beds or cut grass. Pat cuts the grass. What chores does each person do?

3. Marissa, Stephan, and Neal are standing in line for the movies. Stephan is not first. Marissa is next to Stephan. Neal is last. List the order from first to last in which they are standing?

4. Maria, Jason, Thomas, and Taj are running for class president. Jason has 68 votes more than Taj, Maria has 25 fewer votes than Jason, Thomas has twice as many votes as Taj. Taj has 65 votes. Who won the election? How many votes did each person receive?

5. Four friends are each wearing different colored shirts. The shirts are pink, yellow, blue, and green. Davey is not wearing pink. Dee is not wearing yellow. Chaz is not wearing green or pink. Phil is wearing blue. What color shirt is each person wearing?

6. Darius, Chuck, Sam, and Erin are lining up for a play. Darius is not first. Chuck is next to Sam and Erin. Sam is not last. Erin is first. What order are they standing in line for the play?
Estimate Products

To estimate a product, round the factor that is greater than 10.

Estimate: \(4 \times 63\)
\[
4 \times 60 = 240
\]

Estimate: \(3 \times 589\)
\[
3 \times 600 = 1,800
\]

Estimate: \(8 \times 2,500\)
\[
8 \times 3,000 = 24,000
\]

Estimate. Show your work.

1. \(5 \times 33\) ________________

2. \(7 \times 48\) ________________

3. \(2 \times 175\) ________________

4. \(6 \times 837\) ________________

5. \(3 \times 624\) ________________

Estimate each product.

6. \(2 \times 29\) ________________

7. \(3 \times 88\) ________________

8. \(4 \times 41\) ________________

9. \(4 \times 532\) ________________

10. \(8 \times 816\) ________________

11. \(7 \times 365\) ________________

12. \(6 \times 593\) ________________

13. \(8 \times 294\) ________________

14. \(4 \times 290\) ________________

15. \(9 \times 756\) ________________

16. \(5 \times 320\) ________________

17. \(9 \times 134\) ________________
14–3

Skills Practice

Estimate Products

Estimate. Round to the nearest ten.

1. \(56 \times 1\)
2. \(39 \times 0\)
3. \(82 \times 1\)
4. \(81 \times 7\)
5. \(90 \times 1\)
6. \(61 \times 8\)

7. \(43 \times 5 = \)____
8. \(9 \times 28 = \)____
9. \(22 \times 4 = \)____
10. \(72 \times 4 = \)____
11. \(6 \times 59 = \)____
12. \(91 \times 7 = \)____
13. \(54 \times 6 = \)____
14. \(7 \times 43 = \)____
15. \(13 \times 3 = \)____
16. \(6 \times 17 = \)____
17. \(85 \times 2 = \)____
18. \(5 \times 47 = \)____

Estimate. Round to the nearest hundred.

19. \(9 \times 101 = \)____
20. \(152 \times 3 = \)____
21. \(6 \times 722 = \)____
22. \(567 \times 8 = \)____
23. \(487 \times 5 = \)____
24. \(2 \times 913 = \)____
25. \(7 \times 238 = \)____
26. \(203 \times 4 = \)____
27. \(1 \times 455 = \)____

Solve.

28. There are 432 rows of 7 chairs in the movie theater. About how many chairs are there?

29. There are 26 tables in the room and 6 chairs around each table. About how many chairs are there?
Reteach

Multiply by a One-Digit Number

You can multiply using models or pencil and paper.

Find 4×21.
Show 4 groups of 21.

You can record this way:

Step 1
Multiply the ones.
$4 \times 1 \text{ ones} = 4 \text{ ones}$

\[
\begin{array}{c}
21 \\
\times 4 \\
\hline
4
\end{array}
\]

Step 2
Multiply the tens.
$4 \times 2 \text{ tens} = 8 \text{ tens}$

\[
\begin{array}{c}
21 \\
\times 4 \\
\hline
4 \\
\hline
80
\end{array}
\]

Step 3
Add.

\[
\begin{array}{c}
21 \\
\times 4 \\
\hline
4 \\
\hline
80 \\
\hline
84
\end{array}
\]

Complete to find the product. You may use models to help you.

1. 23×2
2. 44×2
3. 31×3
4. 23×3
5. 13×3
6. 14×2
7. 24×2
8. 13×2
9. 22×4
10. 12×4
11. $8 \times 11 = \underline{88}$
12. $2 \times 11 = \underline{22}$
13. $3 \times 33 = \underline{99}$
14. $22 \times 3 = \underline{66}$
15. $11 \times 9 = \underline{99}$
16. $2 \times 22 = \underline{44}$
Skills Practice

Multiply by a One-Digit Number

Multiply.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>11</td>
<td>2.</td>
<td>12</td>
<td>3.</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>$\times 6$</td>
<td></td>
<td>$\times 2$</td>
<td></td>
<td>$\times 2$</td>
</tr>
<tr>
<td>6.</td>
<td>24</td>
<td>7.</td>
<td>21</td>
<td>8.</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>$\times 2$</td>
<td></td>
<td>$\times 4$</td>
<td></td>
<td>$\times 2$</td>
</tr>
<tr>
<td>11.</td>
<td>22</td>
<td>12.</td>
<td>12</td>
<td>13.</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td>$\times 3$</td>
<td></td>
<td>$\times 3$</td>
<td></td>
<td>$\times 3$</td>
</tr>
</tbody>
</table>

Solve.

31. A rectangle is 3 tiles wide by 13 tiles high. How many tiles are in the rectangle?

32. Books are stacked in 3 stacks with 12 books in each stack. How many books are in the stacks?
If Dave cuts a 40-inch-long piece of wood into 8-inch pieces, how many pieces will he have?

Step 1
Understand

Be sure you understand the problem.
What do you know?
- A piece of wood is _____ inches long.
- The wood will be cut into _____-inch pieces.

What do you need to find?
- You need to find how many ______

Step 2
Plan

Choose a strategy.
- Logical reasoning
- Draw a picture
- Act it out
- Make an organized list
- Solve a simpler Problem

Make a plan.

You may draw a picture or diagram. Show a piece of wood that is 40 inches long. Count by 8s to see how many 8-inch pieces will fit.

You can also write a number sentence (an equation). Each piece of wood is the same length. Use division to find how many 8-inch pieces of wood will fit.
Reteach

Problem-Solving Investigation (continued)

Step 3

Carry out your plan.

<table>
<thead>
<tr>
<th>Plan 1</th>
<th>Draw a diagram. Count up groups of 8.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count. There are ______ pieces of wood in all.

Plan 2

Write a division sentence.

\[
\text{_____} \div \text{_____} = \text{_____}
\]

He will have ______ pieces of wood.

Step 4

Is the solution reasonable?

Reread the problem.

How can you check your answer?

Solve.

1. Thom and Julie collected cans for recycling. Thom collected 3 times as many as Julie. The total number collected by their class was 400 cans. Thom and Julie collected \(\frac{1}{4}\) of that. How many cans did they each collect?

2. Frank, Joyce, Dalia, and Amando were waiting for the train. Frank was next to Dalia. Dalia was not next to Amando. Amando was next to Joyce, but not next to Frank. In what order were they standing?
Skills Practice
Problem-Solving Investigation

Use any strategy shown below to solve.

- Use the four-step plan
- Solve a simpler problem
- Make an organized list
- Draw a picture
- Act it out
- Use logical reasoning

1. There are 86 students each on a bus. There are 5 buses that arrived at school. About how many students arrived at school?

2. Nicolas, Aaron, Olivia, and Jake each spent $25 at the store on school supplies. If Olivia spends $15 more on a new shirt, how much money did they spend in all?

3. Mario and Laura each have 17 sea shells. If Laura finds 25 more, will they have enough to completely fill a bag that holds 75 shells? Explain.

4. Sherry is making 23 batches of muffins for the bake sale. Each batch of muffins will sell for $3. How much money will be made at the bake sale if all the muffins sell?

5. Michele eats 20 grapes at lunch. She eats 35 grapes at dinner. If she eats 9 grapes for a snack, how many grapes will she eat in all? If there are 15 grapes left for breakfast, how many did Michele have in all?

6. Each box has 38 crackers. About how many crackers are in 7 boxes?

7. Dave went to school, then to the library for 1 hour, then to the store before returning home. He spends 30 minute in travel time. He gets out of school at 3:00. If he arrived at home at 5:30 how long did he spend at the store?
Reteach

Multiply Two-Digit Numbers

Find 4×16.

Step 1
Multiply the ones. Regroup if necessary.

\[
\begin{array}{c}
2 \rightarrow 2 \text{ tens} \\
16 \\
\times 4 \\
4 \rightarrow 4 \text{ ones}
\end{array}
\]

Think: $4 \times 16 = 24 \text{ ones}$

$24 \text{ ones} = 2 \text{ tens} 4 \text{ ones}$

Step 2
Multiply the tens. Add all the tens.

\[
\begin{array}{c}
2 \\
16 \\
\times 4 \\
64
\end{array}
\]

Think: $4 \times 1 \text{ ten} = 4 \text{ tens}$

$4 \text{ tens} + 2 \text{ tens} = 6 \text{ tens}$

So, $4 \times 16 = 64$.

Multiply. Remember to regroup if necessary.

1. \[
\begin{array}{c}
15 \\
\times 3
\end{array}
\]

2. \[
\begin{array}{c}
38 \\
\times 3
\end{array}
\]

3. \[
\begin{array}{c}
59 \\
\times 7
\end{array}
\]

4. \[
\begin{array}{c}
68 \\
\times 2
\end{array}
\]

5. \[
\begin{array}{c}
74 \\
\times 8
\end{array}
\]

6. \[
\begin{array}{c}
28 \\
\times 5
\end{array}
\]

7. \[
\begin{array}{c}
82 \\
\times 6
\end{array}
\]

8. \[
\begin{array}{c}
45 \\
\times 4
\end{array}
\]

9. \[
\begin{array}{c}
49 \\
\times 2
\end{array}
\]

10. \[
\begin{array}{c}
53 \\
\times 8
\end{array}
\]

11. \[
\begin{array}{c}
45 \\
\times 6
\end{array}
\]

12. \[
\begin{array}{c}
58 \\
\times 5
\end{array}
\]

13. \[
\begin{array}{c}
38 \\
\times 7
\end{array}
\]

14. \[
\begin{array}{c}
95 \\
\times 4
\end{array}
\]

15. \[
\begin{array}{c}
34 \\
\times 8
\end{array}
\]

16. $2 \times 39 = \underline{78}$
17. $45 \times 7 = \underline{315}$
18. $6 \times 77 = \underline{462}$
Skills Practice

Multiply Two-Digit Numbers

Multiply.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>31</td>
<td>2.</td>
<td>38</td>
<td>3.</td>
</tr>
<tr>
<td></td>
<td>(\times 8)</td>
<td></td>
<td>(\times 5)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6.</th>
<th>24</th>
<th>7.</th>
<th>35</th>
<th>8.</th>
<th>75</th>
<th>9.</th>
<th>25</th>
<th>10.</th>
<th>78</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\times 8)</td>
<td></td>
<td>(\times 5)</td>
<td></td>
<td>(\times 2)</td>
<td></td>
<td>(\times 5)</td>
<td></td>
<td>(\times 5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11.</th>
<th>59</th>
<th>12.</th>
<th>14</th>
<th>13.</th>
<th>61</th>
<th>14.</th>
<th>79</th>
<th>15.</th>
<th>44</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\times 2)</td>
<td></td>
<td>(\times 3)</td>
<td></td>
<td>(\times 6)</td>
<td></td>
<td>(\times 3)</td>
<td></td>
<td>(\times 9)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16.</th>
<th>18</th>
<th>17.</th>
<th>64</th>
<th>18.</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(\times 5)</td>
<td></td>
<td>(\times 2)</td>
<td></td>
<td>(\times 7)</td>
</tr>
</tbody>
</table>

19. \(2 \times 92 = \) _____
20. \(75 \times 9 = \) _____
21. \(3 \times 85 = \) _____

22. \(9 \times 12 = \) _____
23. \(2 \times 15 = \) _____
24. \(32 \times 4 = \) _____

Solve.

25. Becky charges $25 rent for each space at her flea market. If 8 people rent space, how much money does Becky get?

26. Mrs. Sands teaches 9 different classes at the high school. There are 36 students in each class. How many students does she teach?
Reteach

Multiply Greater Numbers

Use what you know about multiplying 2-digit numbers to multiply 3- and 4-digit numbers.

Find $2 \times 2,739$.

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Step 2</th>
<th>Step 3</th>
<th>Step 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiply the ones. Regroup if necessary.</td>
<td>Multiply the tens. Regroup if necessary.</td>
<td>Multiply the hundreds. Regroup if necessary.</td>
<td>Multiply the thousands. Regroup if necessary.</td>
</tr>
<tr>
<td>1 2,739</td>
<td>1 2,739</td>
<td>1 1 2,739</td>
<td>1 1 2,739</td>
</tr>
<tr>
<td>$\times 2$</td>
<td>$\times 2$</td>
<td>$\times 2$</td>
<td>$\times 2$</td>
</tr>
<tr>
<td>8</td>
<td>78</td>
<td>478</td>
<td>5,478</td>
</tr>
<tr>
<td>2×9 ones = 18 ones</td>
<td>2×3 tens = 6 tens</td>
<td>2×7 hundreds = 14 hundreds</td>
<td>2×2 thousands = 4 thousands</td>
</tr>
<tr>
<td>18 ones</td>
<td>6 tens + 1 ten = 7 tens</td>
<td>1 thousand 4 hundreds</td>
<td>4 thousands + 1 thousand = 5 thousands</td>
</tr>
</tbody>
</table>

Multiply.

1. 252×3
2. 164×4
3. 736×6
4. 205×8
5. $1,246 \times 3$
6. $5,718 \times 4$
7. $3,962 \times 7$
8. $2,498 \times 5$
Skills Practice

Multiply Greater Numbers

Multiply.

1. 245 \(\times \) 2
2. 121 \(\times \) 6
3. 240 \(\times \) 7
4. 324 \(\times \) 4
5. 605 \(\times \) 8

6. 322 \(\times \) 7
7. 573 \(\times \) 3
8. 689 \(\times \) 2
9. 495 \(\times \) 5
10. 225 \(\times \) 9

11. 304 \(\times \) 8
12. 923 \(\times \) 4
13. 2,313 \(\times \) 3
14. 5,112 \(\times \) 4
15. 3,043 \(\times \) 6

16. 1,045 \(\times \) 8
17. 1,623 \(\times \) 7
18. 2,418 \(\times \) 9
19. 9,372 \(\times \) 5
20. 2,094 \(\times \) 9

21. 2 \(\times \) 638 = ______
22. 6 \(\times \) 704 = ______
23. 2 \(\times \) 225 = ______
24. 8 \(\times \) 1,976 = ______
25. 4 \(\times \) 2,430 = ______
26. 3 \(\times \) 4,099 = ______

Solve.

27. The field trip to the art museum costs $11 per student. Mrs. King collects the money from the 6 students in her group. How much does she collect?

28. Each wing of the museum has 2,500 pieces of art on display. How many pieces of art are displayed in the 4 wings of the museum?
Reteach

Multiply Money

You learned how to multiply multidigit numbers. You also learned how to multiply multidigit numbers with regrouping. Multiplying money is no different. Just remember to add the decimal point two spaces over, and don’t forget the dollar sign!

Let’s try a problem together. First, pretend it’s just a regular multiplication problem.

1. \(632 \times 4 = \) Think: Four times two equals 8. Four times three equals 12, carry the one above the 6. Four times six equals 24 plus one makes 25. Answer: 2,528.

2. Now look at the problem with decimal points:
 \(6.32 \times 4 = \) Think: My answer is 2,528, but slide that decimal two places over from the right. My answer is really 25.28.

3. Finally, remember that you are multiplying money.
 What’s missing? A dollar sign!
 \(6.32 \times 4 = \) Think: that dollar sign is missing, and it belongs in front of my answer. $25.28.

Remember, you can use a 0 right after the dollar sign as a place holder. For example, you can write 99 cents as $0.99. They mean the same thing.

Multiply.

1. \(7.46 	imes 4 = \) 2. \(6.92 	imes 3 = \) 3. \(1.07 	imes 5 = \)

4. \(2.05 	imes 8 = \) 5. \(0.67 	imes 2 = \) 6. \(3.19 	imes 4 = \)

7. Mrs. Pena bought frozen yogurt for Alonso and three of his friends. Each cone was $2.19. How much did Mrs. Pena spend on cones? ______
Multiply.

1. $0.84 \times 6 = \underline{5.04}$
2. $4.60 \times 2 = \underline{9.20}$
3. $1.32 \times 5 = \underline{6.60}$

4. $0.74 \times 9 = \underline{6.66}$
5. $2.19 \times 7 = \underline{15.33}$
6. $5.08 \times 4 = \underline{20.32}$

7. $3.29 \times 3 = \underline{9.87}$
8. $0.98 \times 8 = \underline{7.84}$
9. $6.15 \times 2 = \underline{12.30}$

10. $3.59 \times 4 = \underline{14.36}$
11. $1.17 \times 6 = \underline{6.62}$
12. $4.04 \times 2 = \underline{8.08}$

13. $2.32 \times 3 = \underline{6.96}$
14. $0.76 \times 5 = \underline{3.80}$
15. $5.25 \times 4 = \underline{21.00}$

16. $9.15 \times 7 = \underline{64.05}$
17. $2.55 \times 6 = \underline{15.30}$
18. $0.65 \times 8 = \underline{5.20}$

Solve.

19. Mrs. Diaz bought four packs of hot dogs at $4.79 each and 3 packages of buns at $1.79 each. How much did Mrs. Diaz spend on buns and hot dogs? \underline{22.47}

20. Erin was buying supplies for her new pet hamster. She needed two packages of bedding at $3.99 each, four bags of treats at $2.89 each, and three bags of food at $4.79 each. How much did Erin spend on her new pet? \underline{19.50}
Reteach

Divide Multiples of 10, 100, and 1,000

You can use models to divide multiples of 10.

Find 120 ÷ 3.
First model 120. Then divide the models into 3 groups.

So, 120 ÷ 3 = 40.

Use basic facts and division patterns to divide.

Find 100 ÷ 2.
If 10 ÷ 2 = 5,
then 10 tens ÷ 2 = 5 tens.
So, 100 ÷ 2 = 50.

Divide.

1. 320 ÷ 8 = ______
2. 300 ÷ 6 = ______

3. 8 ÷ 4 = ______
4. 15 ÷ 3 = ______

800 ÷ 4 = ______
150 ÷ 3 = ______

Divide. You may use base-ten blocks.

5. 2)160
6. 4)280
7. 8)240
8. 6)180

9. 7)3,500
10. 9)2,700
11. 3)90
12. 5)4,000
Skills Practice

Divide Multiples of 10, 100, and 1,000

Write a division sentence. Then solve.

1. ________________

2. ________________

3. An engineer estimates that a job will take 640 hours. If the engineer works 8 hours each day, how many days will it take to finish the job?

4. The engineer gives part of the job to 4 workers. If they each work the same number of hours and they work a total of 200 hours, how many hours do they each work?

Divide.

5. \(3 \overline{1,800}\)
6. \(4 \overline{240}\)
7. \(9 \overline{270}\)
8. \(2 \overline{140}\)

9. \(3 \overline{120}\)
10. \(8 \overline{6,400}\)
11. \(7 \overline{350}\)
12. \(4 \overline{3,600}\)

13. \(7 \overline{560}\)
14. \(3 \overline{240}\)
15. \(7 \overline{140}\)
16. \(6 \overline{240}\)

17. \(1,800 \div 2 = \) _____
18. \(60 \div 2 = \) _____
19. \(270 \div 3 = \) _____

20. \(250 \div 5 = \) _____
21. \(6,300 \div 7 = \) _____
22. \(300 \div 5 = \) _____

23. \(320 \div 4 = \) _____
24. \(160 \div 2 = \) _____
25. \(2,800 \div 4 = \) _____
Reteach

Estimate Quotients

You can use rounding and basic facts to help you estimate quotients.

Estimate 375 ÷ 6.

Round 375 to the nearest ten that has a basic fact you can use.

Try 360 ÷ 6 = 60.

Try 420 ÷ 6 = 70.

So, 375 ÷ 6 is about 60.

Estimate by rounding. Circle the basic fact you used.

1. 184 ÷ 4 ______ 180 ÷ 3 200 ÷ 4 240 ÷ 4
2. 110 ÷ 5 ______ 100 ÷ 5 120 ÷ 6 100 ÷ 2
3. 280 ÷ 3 ______ 270 ÷ 3 210 ÷ 3 280 ÷ 4
4. 405 ÷ 8 ______ 400 ÷ 5 400 ÷ 8 320 ÷ 8
5. 300 ÷ 7 ______ 210 ÷ 7 300 ÷ 6 280 ÷ 7
6. 57 ÷ 2 ______ 56 ÷ 7 600 ÷ 2 60 ÷ 2

Estimate by rounding. Write the equation you used to solve.

7. 370 ÷ 6 = ______
8. 200 ÷ 9 = ______
9. 124 ÷ 4 = ______

10. 490 ÷ 9 = ______
11. 253 ÷ 3 = ______
12. 750 ÷ 8 = ______
Skills Practice

Estimate Quotients

Estimate by rounding.

1. \(\overline{6} \div 63 \)
2. \(\overline{7} \div 562 \)
3. \(\overline{9} \div 359 \)
4. \(\overline{8} \div 390 \)

5. \(\overline{3} \div 274 \)
6. \(\overline{3} \div 118 \)
7. \(\overline{7} \div 214 \)
8. \(\overline{5} \div 392 \)

9. \(\overline{2} \div 156 \)
10. \(\overline{2} \div 142 \)
11. \(\overline{6} \div 421 \)
12. \(\overline{6} \div 361 \)

13. \(301 \div 5 \)
14. \(242 \div 3 \)
15. \(492 \div 7 \)

16. \(563 \div 8 \)
17. \(204 \div 5 \)
18. \(122 \div 2 \)

ALGEBRA Compare. Write > or <.

19. \(100 \div 2 \) \(\bigcirc \) 40
20. \(90 \div 3 \) \(\bigcirc \) 40
21. \(150 \div 3 \) \(\bigcirc \) 60
22. \(270 \div 9 \) \(\bigcirc \) 30
23. \(250 \div 5 \) \(\bigcirc \) 60
24. \(400 \div 8 \) \(\bigcirc \) 70

Solve.

25. There are 390 students going on a trip to a factory. They fill 5 buses. Each bus holds the same number of students. About how many students does each bus hold?

26. At the factory tour, the guide tells the students that each worker makes an average of 250 parts each day. About how many parts each hour does a worker make during an 8-hour day?
Reteach
Two-Digit Quotients

Find $64 \div 4$.

Step 1
Decide if there are enough tens for 4 groups.

There are enough tens, so the first digit goes in the tens place.

Step 2
Divide the tens into 4 groups.

1 ten in each group

4 tens used
2 tens left Bring down the ones.

Step 3
Regroup 2 tens 4 ones as 24 ones. Divide the ones into 4 groups.

So, $64 \div 4 = 16$.

Divide. Use models if needed. Check your answer.

1. $3)8 \ 4$
 $- \ 6$
 $\underline{\ 4}$

2. $5)9 \ 5$
 $- \underline{\ 5}$

3. $4)8 \ 8$
 $- \underline{\ 8}$
Name ___________________________ Date __________________

15-3

Skills Practice

Two-Digit Quotients

Divide. Use models if needed. Check your answer.

1. 5)65
2. 5)85
3. 4)64
4. 3)99

5. 5)60
6. 7)84
7. 2)86
8. 7)91

9. 6)96
10. 4)76
11. 4)96
12. 8)96

13. 3)93
14. 6)84
15. 3)84
16. 2)$62

17. 6)78
18. 2)$92
19. 5)80
20. 2)$30

21. 98 ÷ 7 = _____
22. 48 ÷ 3 = _____
23. 50 ÷ 2 = _____

24. 90 ÷ 5 = _____
25. 104 ÷ 8 = _____
26. 91 ÷ 7 = _____

27. 72 ÷ 4 = _____
28. 88 ÷ 8 = _____
29. $72 ÷ 4 = _____

30. 60 ÷ 2 = _____
31. 63 ÷ 3 = _____
32. 72 ÷ 6 = _____

Solve.

33. Dave earns $70 for cleaning a house. He splits the money equally with a helper. How much money do they each get?

34. Ruby earns $96 in tips at her job as a waitress. She divides her money into 3 equal amounts for taxes, spending, and saving. How much money does she have for spending?

15–4

Reteach

Problem-Solving Strategy

Work Backward

Aretha rode on a bus for 2 miles from home to the train station. Then she took a train to the city. She returned home the same way. She traveled 16 miles total. How many miles did she travel on the train each way?

<table>
<thead>
<tr>
<th>Step 1 Understand</th>
<th>What do you need to find?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2 Plan</td>
<td>Make a plan.</td>
</tr>
<tr>
<td>Work backward.</td>
<td>She traveled 16 miles total. Each bus ride was two miles.</td>
</tr>
<tr>
<td>Step 3 Solve</td>
<td>Carry out your plan.</td>
</tr>
<tr>
<td>Step 1 Find the number of miles each way.</td>
<td>16 ÷ 2 = 8</td>
</tr>
<tr>
<td>Step 2 She traveled 2 miles on the bus each way.</td>
<td>8 − 2 = 6</td>
</tr>
<tr>
<td>She traveled 6 miles each way on the train.</td>
<td></td>
</tr>
<tr>
<td>Step 4 Check</td>
<td>Check your answer.</td>
</tr>
<tr>
<td>Make sure your answer is reasonable.</td>
<td></td>
</tr>
</tbody>
</table>

Solve. Use the work backward strategy.

1. The South Sound Ferry has a snack bar. Drinks cost $1 and hamburgers cost $3. Julia has 1 drink and 1 hamburger. Julia and Harry spend $12 altogether. If Harry buys the same number of each item, how many drinks and hamburgers does he have?

2. Tickets for the ferry are $5 for adults and $2 for children. The Lin family spends $16 to ride the ferry. How many children do Mr. and Mrs. Lin have?
3. Marisol and her sister Marta spend $3.20 on two bus tickets to the carnival. Once at the carnival, Marisol buys a popcorn for $4.25 and Marta buys a hot dog for $2.75. They each get a caramel apple, which cost $1.50 each. If they began with $20.00 to share and need to save at least $3.20 to get back home, do they have any money to spend after eating? How much?

4. Bethany and Andrey want to go to the library. Andrey lives 10 blocks away from the library. Bethany will be walking from the park, which is 7 blocks away from Andrey’s house. If Bethany stops first to pick up Andrey, how many total blocks will she walk to the library? How many more blocks will she walk than Andrey?

5. Samantha’s mother has given her 2 hours to play any of her 4 favorite video games. It will take her 30 minutes to play one game and 45 minutes to play another. The third game takes 20 minutes to play and the fourth game takes one hour and 20 minutes. List three different combinations of games Samantha can play completely in the amount of time her mother has given her.
Solve. Use the work backward strategy.

1. There are 4 rows of seats in the first-class part of a plane. There is a business-class part of the same plane. If there are 4 seats in each row and 40 seats on the entire plane, how many rows of seats are there is the business-class section?

2. Mr. and Mrs. Lopez take several members of the school’s theater club to a show. Adult tickets cost $9 and student tickets cost $5. They spend $38 on tickets. How many students did Mr. and Mrs. Lopez take?

3. Mr. and Mrs. Jefferson take their 3 children to a Revolutionary War fort. Tickets cost $7 for adults and $5 for children. How much do the Jeffereons spend?

5. Mr. Hong takes a bus to the city. He arrives at a business meeting at 9:00 A.M. The bus ride takes 30 minutes. Then he takes a subway to get to a meeting. The subway ride takes 15 minutes. What time did he leave his house?

6. Eight passengers each took 2 suitcases on a plane. 32 passengers each took one suitcase. How many suitcases did the passengers take on the plane in all?
Reteach

Three-Digit Quotients

Find 387 ÷ 3.

Step 1
Decide if there are enough hundreds for 3 groups.

Step 2
Divide the hundreds into 3 groups.

Step 3
Divide the tens into 3 groups

Step 4
Regroup 2 tens 7 ones as 27 ones. Divide the ones into 3 groups.

So, 387 ÷ 3 = 129.

Divide. Check your answers.

1. 864 ÷ 4 = _____
2. 987 ÷ 3 = _____
3. 573 ÷ 3 = _____
4. 833 ÷ 7 = _____
5. 725 ÷ 5 = _____
6. 288 ÷ 2 = _____
Divide. Check your answers.

1. \(4\div 456\)
2. \(7\div 385\)
3. \(6\div 294\)
4. \(6\div 528\)

5. \(3\div 681\)
6. \(5\div 290\)
7. \(2\div 578\)
8. \(3\div 261\)

9. \(5\div 745\)
10. \(4\div 868\)
11. \(9\div 252\)
12. \(7\div 406\)

13. \(4\div 368\)
14. \(9\div 288\)
15. \(3\div 573\)
16. \(6\div 186\)

17. \(7\div 504\)
18. \(8\div 576\)
19. \(2\div 924\)
20. \(6\div 834\)

21. \(875 \div 7 = \underline{\quad}\)
22. \(528 \div 3 = \underline{\quad}\)
23. \(385 \div 5 = \underline{\quad}\)

24. \(974 \div 2 = \underline{\quad}\)
25. \(852 \div 3 = \underline{\quad}\)
26. \(429 \div 8 = \underline{\quad}\)

27. \(632 \div 8 = \underline{\quad}\)
28. \(204 \div 3 = \underline{\quad}\)
29. \(420 \div 5 = \underline{\quad}\)

30. \(896 \div 2 = \underline{\quad}\)
31. \(476 \div 4 = \underline{\quad}\)
32. \(234 \div 2 = \underline{\quad}\)

Solve.

33. Betsy and her brother split the cost of lemons for their lemonade stand. They spent a total of \(298\)¢. How much did each pay?

34. The lemonade container holds 128 ounces. How many 8-ounce glasses of lemonade does the container hold?
Problem-Solving Investigation

Choose the Best Strategy

Justina is planting a row of shrubs in her backyard. She places shrubs 3 feet apart over a distance of 20 yards. She places the first shrub 3 feet from the edge of the yard. How many shrubs does Justina plant?

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Be sure you understand the problem.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understand</td>
<td>Read carefully.</td>
</tr>
<tr>
<td>What facts do you know?</td>
<td></td>
</tr>
<tr>
<td>• The shrubs are spread over a distance of ______ yards.</td>
<td></td>
</tr>
<tr>
<td>• Justina begins 3 feet from the edge of the yard and places shrubs ______ feet apart.</td>
<td></td>
</tr>
<tr>
<td>What do you need to find?</td>
<td></td>
</tr>
<tr>
<td>• You need to find the number of feet in ______ yards.</td>
<td></td>
</tr>
<tr>
<td>• You need to find how many ______________.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step 2</th>
<th>Make a plan.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plan</td>
<td>Choose a strategy.</td>
</tr>
<tr>
<td>• Logical Reasoning</td>
<td></td>
</tr>
<tr>
<td>• Draw a Picture or Diagram</td>
<td></td>
</tr>
<tr>
<td>• Act It Out</td>
<td></td>
</tr>
<tr>
<td>• Make a Table or List</td>
<td></td>
</tr>
<tr>
<td>• Work Backward</td>
<td></td>
</tr>
<tr>
<td>To find the answer, you can draw a diagram. Find the number of feet in 20 yards. Show a distance that is that many feet long. Count by 3s to see how many shrubs Justina uses if they are placed 3 feet apart.</td>
<td></td>
</tr>
<tr>
<td>To find the answer, you can also write an equation. All the shrubs are the same distance apart. Use division to find how many shrubs Justina uses.</td>
<td></td>
</tr>
</tbody>
</table>
Reteach

Problem-Solving Investigation (continued)

Step 3 Solve

<table>
<thead>
<tr>
<th>Carry out your plan.</th>
</tr>
</thead>
</table>
| How many feet are in 20 yards?
1 yard = 3 feet
20 × 3 = 60 |
| Draw a diagram. Show a 60-foot distance. Count by 3s, adding tick marks as shown. |
| 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 |
| Count the tick marks from 3 to 60. Justina uses ______ shrubs. |

Step 4 Check

<table>
<thead>
<tr>
<th>Is the solution reasonable?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reread the problem.</td>
</tr>
<tr>
<td>Does your answer make sense? Yes No</td>
</tr>
<tr>
<td>Which method do you prefer? Explain.</td>
</tr>
</tbody>
</table>

Use any strategy shown below to solve.

- Make an organized list
- Draw a picture
- Act it out
- Use logical reasoning
- Work backward

1. There are 900 seconds in 15 minutes. How many seconds are in one hour?

2. Adelaide’s parents are having a dinner party. There are 112 guests invited. Should 5, 6, or 8 guests sit at each table so that each table has the same number of guests?
1. On Peapack’s Park Day, volunteers work in the park. One volunteer has 6 boxes of plants. There are 12 plants in each box. If the volunteer puts the plants in rows of 9, how many rows can he make?

2. Peapack’s town square is surrounded by 64 trees. The same number of trees are on each of the 4 sides. The trees on each side are divided into 2 equal rows. How many trees are in each row?

3. Bonnle takes a large photo. She makes a square frame for the photo. Each side of the frame is 27 inches long. How many inches around is the frame?

4. Some volunteers are building picnic tables. The tables can seat 4 adults or 6 children. How many adults can sit at 6 tables? How many children?

5. The benches at the park can seat a total of 95 people. Each bench can seat 5 people. How many benches are at the park?

6. The third-grade class makes a mural for the train station. The mural is 30 feet long. The mural is divided into 6 equal sections. How many feet long is each section?

7. Write a problem that you could solve by drawing a diagram or by writing a division sentence. Share it with others.
Divide Money

To divide money amounts, divide the same way you divide whole numbers.

Find $9.56 \div 4$.

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
<th>Quotient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Divide the dollars.</td>
<td>2.39</td>
</tr>
<tr>
<td></td>
<td>(4 \div 9.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Divide 9 ÷ 4.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multiply 4 (\times) 2.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtract 9 – 8.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compare 1 < 4.</td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Divide the dimes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4 \div 9.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtract 15 – 12.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compare 3 < 4.</td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Divide the pennies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4 \div 9.56)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Subtract 36 – 36.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Compare 0 < 4.</td>
<td></td>
</tr>
<tr>
<td>Step 4</td>
<td>Write the dollar sign and decimal point in the quotient.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(4 \div 9.56)</td>
<td>$2.39)</td>
</tr>
<tr>
<td></td>
<td>-8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-36</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Check

\[2.39 \times 4 = 9.56\]
The answer is correct.

Divide. Check your answer.

1. \(4 \div 6.20\)
2. \(7 \div 8.61\)
3. \(3 \div 6.93\)
4. \(5 \div 4.75\)
5. \(4 \div 3.92\)
6. \(9 \div 17.28\)
Skills Practice

Divide Money

Divide. Check your answer.

1. \(\$4.50 \div 5 = \) \\
 \[\underline{}\]

2. \(\$8.32 \div 4 = \) \\
 \[\underline{}\]

3. \(\$3.50 \div 5 = \) \\
 \[\underline{}\]

4. \(\$9.27 \div 3 = \) \\
 \[\underline{}\]

Find the unit cost.

5. 4 shirts for $20 \\
 \[\underline{}\]

6. 10 notebooks for $5 \\
 \[\underline{}\]

7. 3 cans of soup for $4.50 \\
 \[\underline{}\]

8. 4 bottles of water for $2 \\
 \[\underline{}\]

For Exercises 9–10 refer to the chart.

9. Amy bought 3 of one item and spent $21. What did she buy? \\
 \[\underline{}\]

10. Jonathan bought 4 of one item and spent $12. What did he buy? \\
 \[\underline{}\]